论文标题

$(λ_ {\ rm r},\ varepsilon)$和$(v/σ,\ varepsilon)$图的物理说明

Physical Explanation for the Galaxy Distribution on the $(λ_{\rm R}, \varepsilon)$ and $(V/σ, \varepsilon)$ Diagrams or for the Limit on Orbital Anisotropy

论文作者

Wang, Bitao, Cappellari, Michele, Peng, Yingjie

论文摘要

在$(λ_ {\ rm r}中,\ varepsilon)$和$(v/σ,\ varepsilon)$图表用于表征动态状态的$图,快速旋转器星系(早期型和螺旋)分布在良好的叶形叶形内。这被解释为轨道各向异性的上限随着星系固有的扁平化而增加。但是,缺少对这种经验趋势的物理解释。在这里,我们使用圆柱或球体对准的速度椭圆形(两个极端假设),构建牛仔裤各向异性模型(JAM),每种都具有空间构恒定或 - 可变量的各向异性。我们使用果酱来构建轴对称星系的模拟样品,假设速度椭圆形的平均形状(如重现真实星系旋转所需的必要),并且将径向各向异性$β$限制在物理解决方案允许的范围内。我们发现,所有四个模拟样本自然都可以预测$(λ_{\ rm rm r},\ varepsilon)$和$(v/σ,\ varepsilon)$图的观察到的星系分布,而没有进一步的假设。考虑到来自完全不同模型的结果的相似性,我们得出结论,真实星系中的经验各向异性上限以及相应的观察到的分布在$(λ_{\ rm rm r},\ varepsilon)$和$(v/σ,v/σ,\ varepsilon)$ n $ n $ n $ n $ n uctiut $ n $ n $ n $ n $ n uctib $ nsuibe $ n ucty y At y At y At y At y At y Autibe unibir $当速度椭圆形接近时。

In the $(λ_{\rm R}, \varepsilon)$ and $(V/σ, \varepsilon)$ diagrams for characterizing dynamical states, the fast-rotator galaxies (both early-type and spirals) are distributed within a well-defined leaf-shaped envelope. This was explained as due to an upper limit to the orbital anisotropy increasing with galaxy intrinsic flattening. However, a physical explanation for this empirical trend was missing. Here we construct Jeans Anisotropic Models (JAM), with either cylindrically or spherically aligned velocity ellipsoid (two extreme assumptions), and each with either spatially-constant or -variable anisotropy. We use JAM to build mock samples of axisymmetric galaxies, assuming on average an oblate shape for the velocity ellipsoid (as required to reproduce the rotation of real galaxies), and limiting the radial anisotropy $β$ to the range allowed by physical solutions. We find that all four mock samples naturally predict the observed galaxy distribution on the $(λ_{\rm R}, \varepsilon)$ and $(V/σ, \varepsilon)$ diagrams, without further assumptions. Given the similarity of the results from quite different models, we conclude that the empirical anisotropy upper limit in real galaxies, and the corresponding observed distributions in the $(λ_{\rm R}, \varepsilon)$ and $(V/σ, \varepsilon)$ diagrams, are due to the lack of physical axisymmetric equilibrium solutions at high $β$ anisotropy when the velocity ellipsoid is close to oblate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源