论文标题

$ p $ - 基础和拓扑组

$P$-bases and Topological Groups

论文作者

Feng, Ziqn

论文摘要

如果存在一个$ x $的拓扑空间$ x $,则在任何$ x $ in x $ in x $ in x $ p $的任何$ p $ base中,如果存在邻里base $(u_p [x])_ {p \ in p} $ at $ x $,以便$ x $,以便$ x $,以便$ x $ $ u_p [x] \ subseteq u_ _ subseteq u_ {p'} $ $ $ p $ p $我们证明了一个紧凑的空间是可计数的,因此可以计算,如果它具有可计数的散射高度,并且是$ \ natercal {k}(m)$ - 一些可分开的度量公制空间$ m $的基础。这给出了\ cite {banakh2019}的问题8.6.8的积极答案。 令$ a(x)$为$ x $的免费Abelian拓扑组。结果表明,如果$ y $是$ x $的缩回,则免费的Abelian拓扑组$ a(y)$具有$ p $ - base,$ a(x/y)$具有$ q $ - base,则$ a(x)$具有$ p \ times q times q $ - basase。另外,如果$ y $是$ x $的封闭子空间,而$ a(x)$具有$ p $ bas,则$ a(x/y)$具有$ p $ - base。 结果表明,任何具有$ \ MATHCAL {K}(M)$的Fréche-urysohn拓扑组 - 对于某些可分开的度量空间$ m $的基础都是首先计算,因此可转换。而且,如果$ p $是具有口径〜$(ω_1,ω)$和$ g $的姿势,则是一个具有$ p $ bas的拓扑组,那么G中的任何前校准子集都是可分配的,因此$ g $是严格的天使般的。讨论了功能空间中的应用程序$ C_P(X)$和$ C_K(X)$。我们还举例说明了一个拓扑布尔的字符$ \ leq \ mathfrak {d} $的拓扑布尔,使得前事子集可迁移,但是$ g $如果$ω^ω$ - base如果$ω_1<\ m athfrak {d} $。这给出了\ cite {gkl15}中的问题6.5的一致的负面答案。

A topological space $X$ is defined to have a neighborhood $P$-base at any $x\in X$ from some poset $P$ if there exists a neighborhood base $(U_p[x])_{p\in P}$ at $x$ such that $U_p[x]\subseteq U_{p'}[x]$ for all $p\geq p'$ in $P$. We prove that a compact space is countable, hence metrizable, if it has countable scattered height and a $\mathcal{K}(M)$-base for some separable metric space $M$. This gives a positive answer to Problem 8.6.8 in \cite{Banakh2019}. Let $A(X)$ be the free Abelian topological group on $X$. It is shown that if $Y$ is a retract of $X$ such that the free Abelian topological group $A(Y)$ has a $P$-base and $A(X/Y)$ has a $Q$-base, then $A(X)$ has a $P\times Q$-base. Also if $Y$ is a closed subspace of $X$ and $A(X)$ has a $P$-base, then $A(X/Y)$ has a $P$-base. It is shown that any Fréche-Urysohn topological group with a $\mathcal{K}(M)$-base for some separable metric space $M$ is first-countable, hence metrizable. And if $P$ is a poset with calibre~$(ω_1, ω)$ and $G$ is a topological group with a $P$-base, then any precompact subset in G is metrizable, hence $G$ is strictly angelic. Applications in function spaces $C_p(X)$ and $C_k(X)$ are discussed. We also give an example of a topological Boolean group of character $\leq \mathfrak{d}$ such that the precompact subsets are metrizable but $G$ doesn't have an $ω^ω$-base if $ω_1<\mathfrak{d}$. This gives a consistent negative answer to Problem 6.5 in \cite{GKL15}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源