论文标题

Gerstenhaber支架在Hopf代数和Hochschild共同体上

Gerstenhaber bracket on Hopf algebra and Hochschild cohomologies

论文作者

Karadağ, Tekin

论文摘要

我们计算了塔夫特代数$ t_p $的Hopf代数和Hochschild共同体上的Gerstenhaber支架,任何整数$ P> 2 $,这是一个非Quasi-Triangular Hopf代数。我们表明,与所有已知的准三角霍夫夫代数一样,在$ t_p $的HOPF代数同胞中,支架确实为零。此示例是非Quasi-Triangular代数的第一个已知的括号计算。此外,我们在任何HOPF代数共同体上找到了与钢筋分辨率上的任何HOPF代数的HOPF代数共同体的一般公式,这让人联想到Gerstenhaber的Hochschild共同学的原始公式。

We calculate the Gerstenhaber bracket on Hopf algebra and Hochschild cohomologies of the Taft algebra $T_p$ for any integer $p>2$ which is a nonquasi-triangular Hopf algebra. We show that the bracket is indeed zero on Hopf algebra cohomology of $T_p$, as in all known quasi-triangular Hopf algebras. This example is the first known bracket computation for a nonquasi-triangular algebra. Also, we find a general formula for the bracket on Hopf algebra cohomology of any Hopf algebra with bijective antipode on the bar resolution that is reminiscent of Gerstenhaber's original formula for Hochschild cohomology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源