论文标题
光度红移的混合模型
Mixture Models for Photometric Redshifts
论文作者
论文摘要
确定光度降递到高精度对于测量广阔宇宙学实验中的距离至关重要。只有手头的光度信息,照片-Z在中间的灭绝和不同天体物理学来源的未知基础光谱 - 能源分布中易于系统不确定性。在这里,我们旨在解决这些模型退化,并在天体物理源的内在物理特性和外部系统学之间获得明显的分离。我们的目标是估算完整的照片-Z概率分布及其不确定性。我们使用混合密度网络(MDN)执行概率的照片-Z测定。训练数据集由光学($ GRIZ $)点扩展功能和模型尺寸和灭绝测量值组成,而SDSS-DR15和Wise Midinfrare($3.4μ$ M和$4.6μ$ M)的模型大小。我们使用无限的高斯混合模型将数据集中的对象分类为恒星,星系或类星体,并确定MDN组件的数量以实现最佳性能。正确分为主要类的对象的分数为94%。与SDSS photo -Z相比,我们的方法将光度红移估计值(即平均$ΔZ$ =(ZP -ZS)/(1 + Zs))提高了一个数量级,并减少了$3σ$ Outlliers(即3RMS $(ΔZ)<ΔZ<δz<ΔZ<ΔZ$)。低红移星系中,我们所得的照片Z中的相对均方根系统不确定性降至1.7%(ZS $ <$ <$ 0.5)。我们已经证明了基于机器学习的方法的可行性,这些方法具有与最先进技术具有竞争性能的图片-Z估计的完整概率分布。我们的方法可以应用于宽场调查,在宽场调查中,在天空中可以显着变化,并且具有稀疏的光谱校准样品。
Determining photometric redshifts to high accuracy is paramount to measure distances in wide-field cosmological experiments. With only photometric information at hand, photo-zs are prone to systematic uncertainties in the intervening extinction and the unknown underlying spectral-energy distribution of different astrophysical sources. Here, we aim to resolve these model degeneracies and obtain a clear separation between intrinsic physical properties of astrophysical sources and extrinsic systematics. We aim at estimates of the full photo-z probability distributions, and their uncertainties. We perform a probabilistic photo-z determination using Mixture Density Networks (MDN). The training data-set is composed of optical ($griz$) point-spread-function and model magnitudes and extinction measurements from the SDSS-DR15, and WISE midinfrared ($3.4 μ$m and $4.6 μ$m) model magnitudes. We use Infinite Gaussian Mixture models to classify the objects in our data-set as stars, galaxies or quasars, and to determine the number of MDN components to achieve optimal performance. The fraction of objects that are correctly split into the main classes is 94%. Our method improves the bias of photometric redshift estimation (i.e. the mean $Δz$ = (zp - zs)/(1 + zs)) by one order of magnitude compared to the SDSS photo-z, and decreases the fraction of $3 σ$ outliers (i.e. 3rms$(Δz) < Δz$). The relative, root-mean-square systematic uncertainty in our resulting photo-zs is down to 1.7% for low-redshift galaxies (zs $<$ 0.5). We have demonstrated the feasibility of machine-learning based methods that produce full probability distributions for photo-z estimates with a performance that is competitive with state-of-the art techniques. Our method can be applied to wide-field surveys where extinction can vary significantly across the sky and with sparse spectroscopic calibration samples.