论文标题
一个稳定梯子孤子的家族,正在飞行翅膀
A family of 3d steady gradient solitons that are flying wings
论文作者
论文摘要
我们发现一个稳定的梯度RICCI Soliton的家族正在飞翔。这验证了汉密尔顿的猜想。对于3D飞行翼,我们表明标量曲率在无穷大时不会消失。 3D飞行翅膀倒塌了。 对于尺寸$ n \ ge 4 $,我们找到了一个$ \ mathbb {z} _2 \ times o(n-1)$的家族 - 对称但非旋转的n维稳定稳定梯度孤子,带有正曲率操作员。我们表明这些孤子是非汇合的。
We find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at infinity. The 3d flying wings are collapsed. For dimension $n\ge 4$, we find a family of $\mathbb{Z}_2\times O(n-1)$-symmetric but non-rotationally symmetric n-dimensional steady gradient solitons with positive curvature operator. We show that these solitons are non-collapsed.