论文标题
具有椭圆形横截面的太阳冠状环的扭结振荡。 I.线性制度
Kink Oscillations in Solar Coronal Loops with Elliptical Cross-Sections. I. the linear regime
论文作者
论文摘要
建议太阳冠状环的横截面很少是圆形的。我们通过从初始值 - 问题的角度求解三维磁性水力动力学方程,检查具有椭圆形横截面的笔直,密度增强的磁性圆柱的线性扭振荡。由相关的欧吉模式分析的动机,我们区分了两个独立的极化,一个沿主要轴(M模型),另一个沿次要的极化(M模型)(M模型)。我们发现,正如具有圆形横截面的冠状环一样,环路轴的横向位移的明显阻尼伴随着横向Alfvénic运动的积累,并导致其中的小尺度的发展,这表明其综合吸收和相结合的概念的稳健性。此外,通常可以在循环位移的时间演变中分开两个阶段。高斯时间依赖性先于指数级。对于环路及其周围环境之间的两个检查的密度比,M模型(M模式)的周期往往随着主要半轴比率而增加(降低),而在M模型的指数阶段的抑制时间倾向于超过其M模型对应物。对于我们检查的两个横向剖面是正确的。但是,在指数阶段,减震时间的相对大小的不同极化取决于横向轮廓和/或密度对比度的规范。我们的数值发现的应用是在冠状地震学的背景下讨论的。
The cross sections of solar coronal loops are suggested to be rarely circular. We examine linear kink oscillations in straight, density-enhanced, magnetic cylinders with elliptical cross-sections by solving the three-dimensional magnetohydrodynamic equations from an initial-value-problem perspective. Motivated by relevant eigen-mode analyses, we distinguish between two independent polarizations, one along the major axis (the M-modes) and the other along the minor one (the m-modes). We find that, as happens for coronal loops with circular cross-sections, the apparent damping of the transverse displacement of the loop axis is accompanied by the accumulation of transverse Alfvénic motions and the consequent development of small-scales therein, suggesting the robustness of the concepts of resonant absorption and phase-mixing. In addition, two stages can in general be told apart in the temporal evolution of the loop displacement; a Gaussian time dependence precedes an exponential one. For the two examined density ratios between loops and their surroundings, the periods of the M-modes (m-modes) tend to increase (decrease) with the major-to-minor-half-axis ratio, and the damping times in the exponential stage for the M-modes tend to exceed their m-mode counterparts. This is true for the two transverse profiles we examine. However, the relative magnitudes of the damping times in the exponential stage for different polarizations depend on the specification of the transverse profile and/or the density contrast. The applications of our numerical findings are discussed in the context of coronal seismology.