论文标题
Fano三倍的合理曲线的模量空间
Moduli spaces of rational curves on Fano threefolds
论文作者
论文摘要
我们证明了在平滑的Fano三倍上的模量空间的组件分类的几个分类结果。特别是,随着程度的增加,我们证明了Batyrev对组件数量的生长的猜想。我们方法的关键是几何Manin的猜想,它可以预测组件的参数化游离曲线的数量。
We prove several classification results for the components of the moduli space of rational curves on a smooth Fano threefold. In particular, we prove a conjecture of Batyrev on the growth of the number of components as the degree increases. The key to our approach is Geometric Manin's Conjecture which predicts the number of components parameterizing free curves.