论文标题

使用微分方程的轨迹在知识图中学习的基础学习

Motif Learning in Knowledge Graphs Using Trajectories Of Differential Equations

论文作者

Nayyeri, Mojtaba, Xu, Chengjin, Lehmann, Jens, Vahdati, Sahar

论文摘要

知识图嵌入(KGES)通过将实体和关系从知识图映射到几何空间(通常是向量空间),在链接预测任务上显示出了有希望的性能。最终,通过在学习的嵌入(向量)上使用评分函数来衡量预测链接的合理性。因此,在保存图形特征(包括结构方面和语义)的能力高度取决于KGE的设计以及基础几何学的遗传能力。许多kges使用平坦的几何形状,使它们无法保存复杂的结构,因此导致模型的错误推断。为了解决这个问题,我们提出了一个神经差异KGE,该KGE将kg的节点嵌入了普通微分方程(ODES)的轨迹上。为此,我们将kg中的每个关系(边缘)表示为光滑的riemannian歧管上的向量场。我们通过神经网络特别将ODES参数化,以表示歧管上的各种复杂形状歧管和更重要的复杂形状矢量场。因此,基础嵌入空间能够获得各种几何形式,以编码具有不同基序的子图结构中的复杂性。关于合成和基准数据集以及社交网络KGS的实验证明了ode轨迹是构建保存的手段,因此避免了对最先进的KGE模型的错误推断。

Knowledge Graph Embeddings (KGEs) have shown promising performance on link prediction tasks by mapping the entities and relations from a knowledge graph into a geometric space (usually a vector space). Ultimately, the plausibility of the predicted links is measured by using a scoring function over the learned embeddings (vectors). Therefore, the capability in preserving graph characteristics including structural aspects and semantics highly depends on the design of the KGE, as well as the inherited abilities from the underlying geometry. Many KGEs use the flat geometry which renders them incapable of preserving complex structures and consequently causes wrong inferences by the models. To address this problem, we propose a neuro differential KGE that embeds nodes of a KG on the trajectories of Ordinary Differential Equations (ODEs). To this end, we represent each relation (edge) in a KG as a vector field on a smooth Riemannian manifold. We specifically parameterize ODEs by a neural network to represent various complex shape manifolds and more importantly complex shape vector fields on the manifold. Therefore, the underlying embedding space is capable of getting various geometric forms to encode complexity in subgraph structures with different motifs. Experiments on synthetic and benchmark dataset as well as social network KGs justify the ODE trajectories as a means to structure preservation and consequently avoiding wrong inferences over state-of-the-art KGE models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源