论文标题
量子计量学中参数估计的快捷方式到难糖技术
Shortcut-to-adiabaticity-like techniques for parameter estimation in quantum metrology
论文作者
论文摘要
量子计量学利用量子力学来改善精度测量和测量敏感性。它通常是针对时间独立的哈密顿人制定的,但是时间依赖的哈密顿人可能会提供优势,例如,$ t^4 $时间依赖Fisher信息,而这些信息无法与时间无关的Hamiltonian来达到。在与时间依赖的哈密顿量(自然通讯8,2017)的最佳自适应控制中,Shengshi Pang和Andrew N. Jordan提出了一种类似的方法(STA)式方法,特别是一种与“反脱水”术语形式上相似的方法。我们从STA的角度重新审视了这项工作,以设置计量学和普通STA中类似STA的方法之间的关系和差异。该分析为在参数估计中应用其他类似STA的技术铺平了道路。特别是,我们探讨了使用物理统一转换来提出替代时间依赖时间的汉密尔顿人,这可能更容易在实验室中实施。
Quantum metrology makes use of quantum mechanics to improve precision measurements and measurement sensitivities. It is usually formulated for time-independent Hamiltonians but time-dependent Hamiltonians may offer advantages, such as a $T^4$ time dependence of the Fisher information which cannot be reached with a time-independent Hamiltonian. In Optimal adaptive control for quantum metrology with time-dependent Hamiltonians (Nature Communications 8, 2017), Shengshi Pang and Andrew N. Jordan put forward a Shortcut-to-adiabaticity (STA)-like method, specifically an approach formally similar to the "counterdiabatic approach", adding a control term to the original Hamiltonian to reach the upper bound of the Fisher information. We revisit this work from the point of view of STA to set the relations and differences between STA-like methods in metrology and ordinary STA. This analysis paves the way for the application of other STA-like techniques in parameter estimation. In particular we explore the use of physical unitary transformations to propose alternative time-dependent Hamiltonians which may be easier to implement in the laboratory.