论文标题

用于多路表示学习的图形正则非负张量环分解

Graph Regularized Nonnegative Tensor Ring Decomposition for Multiway Representation Learning

论文作者

Yu, Yuyuan, Zhou, Guoxu, Zheng, Ning, Xie, Shengli, Zhao, Qibin

论文摘要

张量环(TR)分解是利用多路数据的低级别性质的强大工具,并且在各种重要应用中都具有巨大的潜力。在本文中,提出了非负张量环(NTR)分解和图形正则化NTR(GNTR)分解,以前,前者通过对核心张量施加非负性,而后者还可以捕获不转化数据的流形信息,从而扩展了远程构成的构图,以捕获核心的几何信息,从而使核心的几何形状均能扩展到不转化的构图,从而使核心张量施加了非负性。基于NTR和GNTR的基于近端梯度的方法是基于近端梯度的。实验结果表明,所提出的算法可以提取基于零件的基础,并具有丰富的颜色和张量对象的丰富线条,这些算法提供了更容易解释和有意义的表示,因此比基于群集和分类任务的基于最先进的基于最先进的张量的方法产生更好的性能。

Tensor ring (TR) decomposition is a powerful tool for exploiting the low-rank nature of multiway data and has demonstrated great potential in a variety of important applications. In this paper, nonnegative tensor ring (NTR) decomposition and graph regularized NTR (GNTR) decomposition are proposed, where the former equips TR decomposition with local feature extraction by imposing nonnegativity on the core tensors and the latter is additionally able to capture manifold geometry information of tensor data, both significantly extend the applications of TR decomposition for nonnegative multiway representation learning. Accelerated proximal gradient based methods are derived for NTR and GNTR. The experimental result demonstrate that the proposed algorithms can extract parts-based basis with rich colors and rich lines from tensor objects that provide more interpretable and meaningful representation, and hence yield better performance than the state-of-the-art tensor based methods in clustering and classification tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源