论文标题

加速有限温度Kohn-Sham密度功能理论,具有深神经网络

Accelerating Finite-temperature Kohn-Sham Density Functional Theory with Deep Neural Networks

论文作者

Ellis, J. Austin, Fiedler, Lenz, Popoola, Gabriel A., Modine, Normand A., Stephens, J. Adam, Thompson, Aidan P., Cangi, Attila, Rajamanickam, Sivasankaran

论文摘要

我们提出了基于机器学习(ML)的数值建模工作流程,该工作流程在有限的电子温度下以可忽略的计算成本重现了Kohn-Sham密度功能理论(DFT)产生的总能量。基于深层神经网络,我们的工作流程得出给定的原子配置的状态局部密度(LDO)。可以从LDO中计算出空间分辨,能量分辨和综合数量,包括DFT总自由能,该能充当原子的Born-Oppenheeimer势能表面。我们证明了这种方法对固体金属和液体金属的疗效,并比较了固体和液体铝的独立和统一的机器学习模型之间的结果。我们的机器学习密度功能理论框架为在环境和极端条件下以计算量表和当前算法无法实现的计算规模和成本为物质建模的道路开辟了道路。

We present a numerical modeling workflow based on machine learning (ML) which reproduces the the total energies produced by Kohn-Sham density functional theory (DFT) at finite electronic temperature to within chemical accuracy at negligible computational cost. Based on deep neural networks, our workflow yields the local density of states (LDOS) for a given atomic configuration. From the LDOS, spatially-resolved, energy-resolved, and integrated quantities can be calculated, including the DFT total free energy, which serves as the Born-Oppenheimer potential energy surface for the atoms. We demonstrate the efficacy of this approach for both solid and liquid metals and compare results between independent and unified machine-learning models for solid and liquid aluminum. Our machine-learning density functional theory framework opens up the path towards multiscale materials modeling for matter under ambient and extreme conditions at a computational scale and cost that is unattainable with current algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源