论文标题
量子理论中的界限和模拟上下文相关性
Bounding and simulating contextual correlations in quantum theory
论文作者
论文摘要
我们介绍了在广义上下文场景中的一组量子相关集的半芬矿放松的层次结构。这构成了一个简单且通用的工具,用于界定量子上下文的大小。为了说明其效用,我们使用它来确定对以前最大侵犯的几种非上下文不平等的最大量子违反。然后,我们走得更远,并使用它来证明无法用纯净的状态解释某些制备上下文相关性,从而表明混合状态是上下文中必不可少的资源。在本文的第二部分中,我们将注意力转移到了一般操作理论中制备上下文相关性的模拟中。我们介绍了模拟准备准备上下文的信息成本,该信息量化了模拟经典模型或量子模型中的上下文相关性所需的附加(否则禁止)的信息。在这两种情况下,我们都表明,使用我们半决赛放松的层次结构的变体可以有效地限制模拟成本,并且我们以典型的多样化的最简单的上下文情景进行了准确的计算。
We introduce a hierarchy of semidefinite relaxations of the set of quantum correlations in generalised contextuality scenarios. This constitutes a simple and versatile tool for bounding the magnitude of quantum contextuality. To illustrate its utility, we use it to determine the maximal quantum violation of several noncontextuality inequalities whose maximum violations were previously unknown. We then go further and use it to prove that certain preparation-contextual correlations cannot be explained with pure states, thereby showing that mixed states are an indispensable resource for contextuality. In the second part of the paper, we turn our attention to the simulation of preparation-contextual correlations in general operational theories. We introduce the information cost of simulating preparation contextuality, which quantifies the additional, otherwise forbidden, information required to simulate contextual correlations in either classical or quantum models. In both cases, we show that the simulation cost can be efficiently bounded using a variant of our hierarchy of semidefinite relaxations, and we calculate it exactly in the simplest contextuality scenario of parity-oblivious multiplexing.