论文标题
负面水平和棱柱形晶体的扭曲差分运算符
Twisted differential operators of negative level and prismatic crystals
论文作者
论文摘要
我们介绍了负水平的扭曲差分积分,并证明了下降定理:Frobenius回调提供了有限呈现的模块之间的等效性,并具有拓扑上的Quasogogy-Nilpotent twisted twisted twisted Connection luvel sinus One和Level Zero的连接。我们解释这与卡地亚晶体上的卡地亚操作员的存在如何相关。为了可读性,我们将自己限制在维度一个情况下。
We introduce twisted differential calculus of negative level and prove a descent theorem: Frobenius pullback provides an equivalence between finitely presented modules endowed with a topologically quasi-nilpotent twisted connection of level minus one and those of level zero. We explain how this is related to the existence of a Cartier operator on prismatic crystals. For the sake of readability, we limit ourselves to the case of dimension one.