论文标题

修改后的长波长近似的显着预测能力

Remarkable Predictive Power of the Modified Long Wavelength Approximation

论文作者

Rasskazov, Ilia L., Zakomirnyi, Vadim I., Utyushev, Anton D., Carney, P. Scott, Moroz, Alexander

论文摘要

修改后的长波长近似(MLWA)是超出瑞利限制的下一个订单近似值,通常仅适用于偶极$ \ ell = 1 $贡献,对于尺寸参数$ x $不超过$ x \ sillsim 1 $的范围,以估计远 - 近距离远 - 近距离型号和近乎电场的电子电磁物质。前提是给定信道$ \ ell $中$ t $ -matrix的MLWA功能形式仅限于$ t $ t \ sim ir/(f+d-ir)$,其中$ f $是熟悉的尺寸与大小独立的fröhlich术语和$ r \ r \ sim {\ cal o}(x^{2 \ ell+1})动态去极化项$ d \ sim {\ cal o}(x^2)$保留了MLWA的基本特征,即其预测与MIE理论的预测与$ {\ cal o}(x^2)$的顺序相吻合。 By exploiting this untapped design freedom, we demonstrate on a number of different metals (Ag, Al, Au, Mg), and using real material data, that the MLWA may surprisingly yield very accurate results for plasmonic spheres both for (i) $x$ up to $\gtrsim 1$ and beyond, and (ii) higher order multipoles ($\ell>1$), essentially doubling its expected range of validity.因为MLWA消除了使用球形Bessel和Hankel函数的需求,并可以根据驱动的阻尼谐波振荡器参数对(Nano)粒子性质进行直观描述,因此可以实现对纳米颗粒散射和近场特性的显着改善的分析和理解。

The modified long-wavelength approximation (MLWA), a next order approximation beyond the Rayleigh limit, has been applied usually only to the dipole $\ell=1$ contribution and for the range of size parameters $x$ not exceeding $x\lesssim 1$ to estimate far- and near-field electromagnetic properties of plasmonic nanoparticles. Provided that the MLWA functional form for the $T$-matrix in a given channel $\ell$ is limited to the ratio $T\sim iR/(F+D-iR)$, where $F$ is the familiar size-independent Fröhlich term and $R\sim {\cal O}(x^{2\ell+1})$ is a radiative reaction term, there is a one-parameter freedom in selecting the dynamic depolarization term $D\sim {\cal O}(x^2)$ which preserves the fundamental feature of the MLWA that its predictions coincide with those of the Mie theory up to the order ${\cal O}(x^2)$. By exploiting this untapped design freedom, we demonstrate on a number of different metals (Ag, Al, Au, Mg), and using real material data, that the MLWA may surprisingly yield very accurate results for plasmonic spheres both for (i) $x$ up to $\gtrsim 1$ and beyond, and (ii) higher order multipoles ($\ell>1$), essentially doubling its expected range of validity. Because the MLWA obviates the need of using spherical Bessel and Hankel functions and allows for an intuitive description of (nano)particle properties in terms of a driven damped harmonic oscillator parameters, a significantly improved analysis and understanding of nanoparticle scattering and near-field properties can be achieved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源