论文标题
在权力互动系统中的最佳状态转移和纠缠产生
Optimal State Transfer and Entanglement Generation in Power-law Interacting Systems
论文作者
论文摘要
我们提出了一个最佳协议,将未知量子状态编码到多Qubit Greenberger-Horne-Zeilinger样状态中,因此,在展示功率法($ 1/r^α$)相互作用的大型系统中传输量子信息。对于所有幂律指数,$ d $和$ 2D+1 $之间的$α$,其中$ d $是系统的尺寸,该协议可为$α> 2D $的多项式加速和$α\ leq 2d $的超级级别加速速度,与艺术的状态相比。对于所有$α> d $,该协议使Lieb-Robinson边界饱和(直至多个月形校正),从而确立了该协议的最佳性和在此制度中边界的紧密度。该协议具有广泛的应用,包括在量子传感,量子计算和拓扑秩序状态的制备中。此外,该协议在电力法相互作用系统的数字模拟中提供了门计数的下限。
We present an optimal protocol for encoding an unknown qubit state into a multiqubit Greenberger-Horne-Zeilinger-like state and, consequently, transferring quantum information in large systems exhibiting power-law ($1/r^α$) interactions. For all power-law exponents $α$ between $d$ and $2d+1$, where $d$ is the dimension of the system, the protocol yields a polynomial speedup for $α>2d$ and a superpolynomial speedup for $α\leq 2d$, compared to the state of the art. For all $α>d$, the protocol saturates the Lieb-Robinson bounds (up to subpolynomial corrections), thereby establishing the optimality of the protocol and the tightness of the bounds in this regime. The protocol has a wide range of applications, including in quantum sensing, quantum computing, and preparation of topologically ordered states. In addition, the protocol provides a lower bound on the gate count in digital simulations of power-law interacting systems.