论文标题

关于磁盘上函数代数的注释

A note on function algebras on disks

论文作者

Chi, Kieu Phuong, Tan, Mai The

论文摘要

让$ d $成为以$ d $上$ f,$ f,$ f,$ f,$ f,$ f,$ f,$ f $ d $的封闭磁盘。令$ p [f,g; d] $(res。$ r [f,g; d])$)是变量$ f $和$ g $的$ d $ polyenmials(res。有理功能)的统一关闭。在\ cite {os}中,使用复杂的动态系统,O'Farrell和Sanabria-garcia证明了$ \ {\ big(z^2,\ cfrac {\ cfrac {\ overline z} {1+\ overline {z}}} \ big) $ p [z^2,\ cfrac {\ overline z} {1+ \ overline z}; d] \ ne c(d)$如果$ d $足够小。在本文中,我们首先给出了两个紧凑型$ \ bbb c^n $的合理凸度的条件,并申请表明$ r [z^2,\ cfrac {\ overline z} {1+ \ overline z}; d] = c(d)$ for $ d $ hill

Let $D$ be a closed disk in the complex plane centered at the origin, $f, g$ complex valued continuous function on $D$. Let $P[f,g; D]$ (res. $R[f, g; D])$) be the uniform closure on $D$ of polynomials (res. rational functions) in variables $f$ and $g$. In \cite{OS}, using complex dynamical systems, O'Farrell and Sanabria-Garcia proved that $\{\Big(z^2, \cfrac{\overline z}{1+\overline{z}}\Big): z\in D\}$ is not polynomially convex with $D$ small enough and so that $P[z^2,\cfrac{\overline z}{1+\overline z}; D]\ne C(D)$ if $D$ is sufficient small. In this paper, we first give a certain conditions for rational convexity of union of two compact set of $\Bbb C^n$ and apply to show that $R[z^2, \cfrac{\overline z}{1+\overline z}; D]= C(D)$ for all $D$ small enough

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源