论文标题
一个基于比较的梯度估计器
A One-bit, Comparison-Based Gradient Estimator
论文作者
论文摘要
我们研究了凸功能的零级优化,我们进一步假设函数评估是不可用的。取而代之的是,一个人只能访问$ \ textit {比较oracle} $,给定两个点$ x $和$ y $返回一位信息,表明哪个点具有较大的功能值,$ f(x)$或$ f(y)$。通过将梯度视为要恢复的未知信号,我们展示了如何使用一位压缩感应的工具来构建归一化梯度的可靠且可靠的估计器。然后,我们提出了一种在梯度下降方案中使用该估计量的算法,即Scobo。我们表明,当$ f(x)$具有一些较低的维度结构时,可以利用查询复杂性的最先进。我们的理论主张通过广泛的数值实验验证。
We study zeroth-order optimization for convex functions where we further assume that function evaluations are unavailable. Instead, one only has access to a $\textit{comparison oracle}$, which given two points $x$ and $y$ returns a single bit of information indicating which point has larger function value, $f(x)$ or $f(y)$. By treating the gradient as an unknown signal to be recovered, we show how one can use tools from one-bit compressed sensing to construct a robust and reliable estimator of the normalized gradient. We then propose an algorithm, coined SCOBO, that uses this estimator within a gradient descent scheme. We show that when $f(x)$ has some low dimensional structure that can be exploited, SCOBO outperforms the state-of-the-art in terms of query complexity. Our theoretical claims are verified by extensive numerical experiments.