论文标题

太阳光球丰度的空间分辨测量值

Spatially resolved measurements of the solar photospheric oxygen abundance

论文作者

Armas, Melania Cubas, Ramos, Andrés Asensio, Socas-Navarro, Héctor

论文摘要

目标。我们报告了使用空间分辨的观测值和反转确定太阳氧丰度的新测定结果。我们试图通过一种可抵抗模型大气中不确定性的方法来得出光球太阳氧的丰度。 方法。我们使用在真空塔望远镜(VTT)获得的空间分辨率的观测值,以在颗粒和晶间泳道的40个不同空间位置以40个不同的空间位置得出氧丰度。我们首先通过使用Nicole反演代码将FE I线倒转来获得每个位置的模型。然后将这些模型集成到分层贝叶斯模型中,该模型用于推断与所有观测值兼容的氧丰度的最可能值。丰度是从6300Å处的[o i]禁止线得出的,考虑到所有可能影响丰度的可能滋扰参数。 结果。我们的结果表明,对于分析的所有像素的推断氧丰度,表明分析的鲁棒性与模型中可能的系统误差的鲁棒性。当分别处理时,我们发现颗粒中的氧丰度略高于粒间泳道(log(ε_O)= 8.83 \ pm 0.02 vs log(ε_O)= 8.76 \ pm 0.02),这是大约2-σ的差。这种张力表明,模型或辐射转移中的某些系统误差仍然存在,但很小。将所有像素一起使用时,我们获得log(ε_O)= 8.80 \ pm 0.03的氧丰度,这与1-σ内的颗粒和泳道兼容。结果的传播是由于系统的和随机误差所致。

Aims. We report the results of a novel determination of the solar oxygen abundance using spatially resolved observations and inversions. We seek to derive the photospheric solar oxygen abundance with a method that is robust against uncertainties in the model atmosphere. Methods. We use observations with spatial resolution obtained at the Vacuum Tower Telescope (VTT) to derive the oxygen abundance at 40 different spatial positions in granules and intergranular lanes. We first obtain a model for each location by inverting the Fe I lines with the NICOLE inversion code. These models are then integrated into a hierarchical Bayesian model that is used to infer the most probable value for the oxygen abundance that is compatible with all the observations. The abundance is derived from the [O I] forbidden line at 6300 Å taking into consideration all possible nuisance parameters that can affect the abundance. Results. Our results show good agreement in the inferred oxygen abundance for all the pixels analyzed, demonstrating the robustness of the analysis against possible systematic errors in the model. We find a slightly higher oxygen abundance in granules than in intergranular lanes when treated separately (log(ε_O) = 8.83 \pm 0.02 vs log(ε_O) = 8.76 \pm 0.02), which is a difference of approximately 2-σ. This tension suggests that some systematic errors in the model or the radiative transfer still exist but are small. When taking all pixels together, we obtain an oxygen abundance of log(ε_O)=8.80 \pm 0.03, which is compatible with both granules and lanes within 1-σ. The spread of results is due to both systematic and random errors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源