论文标题

基于自动机的定量验证

Automata-based Quantitative Verification

论文作者

Bansal, Suguman

论文摘要

计算系统的定量分析是自动形式分析的新兴领域。这些属性解决了成本和奖励,质量度量,资源消耗,距离指标等方面的问题。 定量分析问题的现有解决方案面临两个挑战,即缺乏普遍性和分离技术。缺乏普遍性是指解决方案方法专门用于成本模型的问题。不同的成本模型部署了这种不同的算法,即知识从一个成本模型没有转移到另一种成本模型。分离技术是指在定量分析中解决问题的固有二分法。大多数算法都包含一个结构阶段,该结构阶段使用来自自动机或图形的技术以及数值阶段来理解定量系统的结构,并使用数值方法进行定量维度/成本模型的原因。这两个阶段中使用的技术彼此不同,因此很难组合,从而影响可扩展性。 本文有助于解决这些挑战的新颖框架。引入的框架(称为比较器自动机或简称比较器)建立在自动机理论基础上,以跨越各种成本模型的概括。比较器在数值阶段启用基于自动机的方法,从而消除了对数值方法的依赖性。为此,比较器能够整合结构和数值阶段。在理论方面,我们证明了这些结果是可推广结果的优点,并且在定量分析中的一系列问题上产生了复杂性改善。在经验方面,我们证明了基于比较器的解决方案具有更有效,可扩展和稳健的性能,并能够将定量与定性目标集成在一起。

Quantitative analysis of computing systems is an emerging area in automated formal analysis. Such properties address aspects such as costs and rewards, quality measures, resource consumption, distance metrics, etc. Existing solutions for problems in quantitative analysis face two challenges, namely lack of generalizability and separation-of-techniques. Lack of generalizability refers to the issue that solution approaches are specialized to cost model. Different cost models deploy such disparate algorithms that there is no transfer of knowledge from one cost model to another. Separation-of-techniques refers to the inherent dichotomy in solving problems in quantitative analysis. Most algorithms comprise of a structural phase which reasons about the structure of the quantitative system(s) using techniques from automata or graphs, and a numerical phase, which reasons about the quantitative dimension/cost model using numerical methods. The techniques used in both phases are so unlike each other that they are difficult to combine, thereby impacting scalability. This thesis contributes to a novel framework that addresses these challenges. The introduced framework, called comparator automata or comparators in short, builds on automata-theoretic foundations to generalize across a variety of cost models. Comparators enable automata-based methods in the numerical phase, hence eradicating the dependence on numerical methods. In doing so, comparators are able to integrate the structural and numerical phases. On the theoretical front, we demonstrate that these have the advantage of generalizable results, and yield complexity-theoretic improvements over a range of problems in quantitative analysis. On the empirical front, we demonstrate that comparator-based solutions render more efficient, scalable, and robust performance, and are able to integrate quantitative with qualitative objectives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源