论文标题
$ q $ -supercongrence带有参数
$q$-Supercongruences with parameters
论文作者
论文摘要
就Guo和Zudilin最近引入的创意显微镜方法而言[Adv。数学。 346(2019),329--358],我们找到了带有四个参数的$ q $ -supercongruence modulo $ $φ_n(q)(q)(1-aq^n)(a-q^n)$,其中$φ_n(q)$表示$ n $ n $ n $ n $ - th $ n $ n $ n $ - th cyclotomic in Cyclotomic in $ q $ q $ q $ q $ q q $。然后,我们将其和中国剩余定理用于多项式多项式,以推导$ q $ - supercongruence,带有两个参数modulo $ [n]φ_n(q)^3 $,其中$ [n] =(1-q^n)/(1-q)$是$ q $ -Integer。
In terms of the creative microscoping method recently introduced by Guo and Zudilin [Adv. Math. 346 (2019), 329--358], we find a $q$-supercongruence with four parameters modulo $Φ_n(q)(1-aq^n)(a-q^n)$, where $Φ_n(q)$ denotes the $n$-th cyclotomic polynomial in $q$. Then we empoly it and the Chinese remainder theorem for coprime polynomials to derive a $q$-supercongruence with two parameters modulo $[n]Φ_n(q)^3$, where $[n]=(1-q^n)/(1-q)$ is the $q$-integer.