论文标题
二维玻色原子混合物的有限温度自旋动力学
Finite temperature spin dynamics of a two-dimensional Bose-Bose atomic mixture
论文作者
论文摘要
我们研究了热波动在稀释超电原子气体的均匀二维二元玻色混合物中的作用。我们使用平均场外的Hartree-fock理论来得出可混杂的不知名过渡的分析预测。该理论的一个非平凡结果是,由于旋转敏感性的不同行为,在$ t = 0 $时的完全可信阶段可能会在$ t \ neq0 $下变得不稳定。我们通过使用随机(投影)Gross-Pitaevskii方程进行数值模拟来测试这一预测,该方程包括超出平均场效应。我们在不同的温度和相互作用强度下计算平衡构型,并模拟由弱外部扰动产生的自旋振荡。尽管有一定的定性一致,但两种理论之间的比较表明,均值场近似无法正确描述在可混杂的不可见的不可见的过渡附近的二维混合物的行为,因为热波动平稳,在相位透析和自旋动力学中,所有尖锐的特征都在旋转动力学中,除了高于临界温度以下的温度以下。
We examine the role of thermal fluctuations in uniform two-dimensional binary Bose mixtures of dilute ultracold atomic gases. We use a mean-field Hartree-Fock theory to derive analytical predictions for the miscible-immiscible transition. A nontrivial result of this theory is that a fully miscible phase at $T=0$ may become unstable at $T\neq0$, as a consequence of a divergent behaviour in the spin susceptibility. We test this prediction by performing numerical simulations with the Stochastic (Projected) Gross-Pitaevskii equation, which includes beyond mean-field effects. We calculate the equilibrium configurations at different temperatures and interaction strengths and we simulate spin oscillations produced by a weak external perturbation. Despite some qualitative agreement, the comparison between the two theories shows that the mean-field approximation is not able to properly describe the behavior of the two-dimensional mixture near the miscible-immiscible transition, as thermal fluctuations smoothen all sharp features both in the phase diagram and in spin dynamics, except for temperature well below the critical temperature for superfluidity.