论文标题

平面案例中各向异性最大曲率的估计值

An estimate for the anisotropic maximum curvature in the planar case

论文作者

Paoli, Gloria

论文摘要

我们修复了Finsler Norm $ f $,并使用各向异性曲率流,我们证明了平稳的Jordan曲线的各向异性最大曲率$ k^f _ {\ max} $,使$ k^f _ {\ max}(\ max}(γ)(γ)(γ) $κ$与各向异性$ f $相关的统一形状的面积。

We fix a Finsler norm $F$ and, using the anisotropic curvature flow, we prove that the anisotropic maximum curvature $k^F_{\max}$ of a smooth Jordan curve is such that $ k^F_{\max}(γ)\geq \sqrt{κ/A}$ , where $A$ is the area enclosed by $γ$ and $κ$ the area of the unitary Wulff shape associated to the anisotropy $F$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源