论文标题

在一个可变复合物多项式的标准的最陡下降的路径上

On the paths of steepest descent for the norm of a one variable complex polynomial

论文作者

Roy, Damien

论文摘要

我们考虑了一个非恒定的一个变量多项式$ f $的标准,在复杂平面中,最陡后下降的路径。我们表明,从$ f $的对数导数的零开始,并以$ f $的根结束,在复杂的平面上画一棵树,我们对其长度进行了上限的估计。在某些情况下,我们获得的估算值仅取决于$ f $的根集,而不取决于它们的多重性,我们想知道这是否可以做到这一点。我们还将这个问题扩展到用于单元磁盘的有​​限blaschke产品。

We consider paths of steepest descent, in the complex plane, for the norm of a non-constant one variable polynomial $f$. We show that such paths, starting from a zero of the logarithmic derivative of $f$ and ending in a root of $f$, draw a tree in the complex plane, and we give an upper bound estimate on their lengths. In some cases, we obtain a finer estimate that depends only on the set of roots of $f$, not on their multiplicity, and we wonder if this can be done in general. We also extend this question to finite Blaschke products for the unit disk.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源