论文标题

lyapunov型的不平等现象,即一维$ p $ -laplacian的Sturm-Liouville问题

Lyapunov-type inequalities for a Sturm-Liouville problem of the one-dimensional $p$-Laplacian

论文作者

Takeuchi, Shingo, Watanabe, Kohtaro

论文摘要

本文考虑了Sturm-Liouville问题的特征问题,包括$ P $ -LAPLACIAN \ BEGIN {ALIGN*} \ BEGIN {Case} \ left(\ Vert U'\ Vert u'\ Vert u'\ vert^{p-2 {p-2} ^{p-2} u = 0,\,\,x \ in(0,π_{p}),\\ u(0)= u(π_{p})= 0,\ end {cases} \ end {case} \ end {align {align {align {align {align {align {align*} $ 1 <p <p <p <p <p <\ p <\ fifty $ fifty $ fifty $,$π_ $π_{p} =2π/\ left(p \ sin(π/p)\ right)$,$ r \ in c [0,π_{p}] $和$λ<p-1 $。提出了尖锐的lyapunov型不平等,这是上述问题的非平凡溶液的必要条件。结果是通过分析与尖锐的Sobolev嵌入以及广义三角和双曲线功能有关的分析。

This article considers the eigenvalue problem for the Sturm-Liouville problem including $p$-Laplacian \begin{align*} \begin{cases} \left(\vert u'\vert^{p-2}u'\right)'+\left(λ+r(x)\right)\vert u\vert ^{p-2}u=0,\,\, x\in (0,π_{p}),\\ u(0)=u(π_{p})=0, \end{cases} \end{align*} where $1<p<\infty$, $π_{p}$ is the generalized $π$ given by $π_{p}=2π/\left(p\sin(π/p)\right)$, $r\in C[0,π_{p}]$ and $λ<p-1$. Sharp Lyapunov-type inequalities, which are necessary conditions for the existence of nontrivial solutions of the above problem are presented. Results are obtained through the analysis of variational problem related to a sharp Sobolev embedding and generalized trigonometric and hyperbolic functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源