论文标题
吉本·乌纳克(Gibbons-Hawking Ansatz
Barrier methods for minimal submanifolds in the Gibbons-Hawking ansatz
论文作者
论文摘要
我们描述了多guchi-hanson和多taub-nut空间中紧凑的最小亚曼叶的障碍论点,这是吉本斯·霍克(Gibbons-Hawking Ansatz)给出的hyperkaehler 4 manifolds。这种方法用于在这种情况下对紧凑型最小亚货量进行分类的结果。我们还证明了Tsai和Wang的结果的相反,将强稳定性条件与距离函数的凸度相关联。
We describe a barrier argument for compact minimal submanifolds in the multi-Eguchi-Hanson and in the multi-Taub-NUT spaces, which are hyperkaehler 4-manifolds given by the Gibbons-Hawking ansatz. This approach is used to obtain results towards a classification of compact minimal submanifolds in this setting. We also prove a converse of Tsai and Wang's result that relates the strong stability condition to the convexity of the distance function.