论文标题

有效的不平等,预处理和有效的启发式启发式,用于通过分配结构进行分配结构的三级大小和补充问题

Valid inequalities, preprocessing, and an effective heuristic for the uncapacitated three-level lot-sizing and replenishment problem with a distribution structure

论文作者

Cunha, Jesus O., Melo, Rafael A.

论文摘要

我们考虑使用分配结构的未竞争性的三级批量和补充问题。在这个NP硬性问题中,单个生产工厂将生产物品发送给仓库,从那里将它们派往零售商,以满足其在有限的计划范围内满足其需求。该问题的目的是确定最大程度地限制总成本的集成生产和分销计划,该计划理解固定的生产和运输设置以及可变的库存持有成本。我们描述了在标准混合整数编程(MIP)公式的空间以及新的替代扩展MIP公式中的新有效不平等。我们表明,使用这种扩展的配方,有效的不平等,具有与标准的结构相似的结构,可以实现更紧密的线性松弛边界。此外,我们提出了一种预处理方法,以减少基于多商品MIP公式的大小和基于多开始的随机自下而上动态编程的启发式。计算实验表明,在分支和切割方法中使用有效的不平等现象会显着提高MIP求解器将实例求解达到最佳性的能力。此外,在已解决的实例数量,运行时间和枚举节点数量方面,扩展公式的有效不平等超过了标准的不平等。此外,拟议的启发式措施能够在很短的计算时间内,即使在大型实例中,在非常短的计算时间内生成了相当低的最佳差距的解决方案。将预处理方法与启发式方法相结合,可以在时间限制内求解为最佳性的解决方案数量以及平均时间的大幅减少以解决它们。

We consider the uncapacitated three-level lot-sizing and replenishment problem with a distribution structure. In this NP-hard problem, a single production plant sends the produced items to replenish warehouses from where they are dispatched to the retailers in order to satisfy their demands over a finite planning horizon. The goal of the problem is to determine an integrated production and distribution plan minimizing the total costs, which comprehends fixed production and transportation setup as well as variable inventory holding costs. We describe new valid inequalities both in the space of a standard mixed integer programming (MIP) formulation and in that of a new alternative extended MIP formulation. We show that using such extended formulation, valid inequalities having similar structures to those in the standard one allow achieving tighter linear relaxation bounds. Furthermore, we propose a preprocessing approach to reduce the size of a multi-commodity MIP formulation and a multi-start randomized bottom-up dynamic programming based heuristic. Computational experiments indicate that the use of the valid inequalities in a branch-and-cut approach significantly increase the ability of a MIP solver to solve instances to optimality. Additionally, the valid inequalities for the extended formulation outperform those for the standard one in terms of number of solved instances, running time and number of enumerated nodes. Moreover, the proposed heuristic is able to generate solutions with considerably low optimality gaps within very short computational times even for large instances. Combining the preprocessing approach with the heuristic, one can achieve an increase in the number of solutions solved to optimality within the time limit together with significant reductions on the average times for solving them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源