论文标题
川崎动力学的流体动力极限,具有较强的有限范围相互作用
Hydrodynamic limit of the Kawasaki dynamics on the 1D-lattice with strong, finite-range interaction
论文作者
论文摘要
我们为具有任意强,二次和有限范围的相互作用的无界的实价旋转的一维保守系统得出了川崎动力学的流体动力极限。这扩展了非相互作用自旋系统的先前结果。结果是通过改编格鲁内瓦尔德,奥托,维拉尼和威斯蒂丁贝格的两种规模方法,并结合了作者最近对具有较强相互作用的保守系统的方法。
We derive the hydrodynamic limit of the Kawasaki dynamics for the one-dimensional conservative system of unbounded real-valued spins with arbitrary strong, quadratic and finite-range interactions. This extends prior results for non-interacting spin systems. The result is obtained by adapting two scale approach of Grunewald, Otto, Villani and Westdickenberg combined with the authors' recent approach on conservative systems with strong interactions.