论文标题
抗孤晶动力学中拉直的不连续性:II
Discontinuity of straightening in anti-holomorphic dynamics: II
论文作者
论文摘要
在[M3]中,Milnor在实际立方多项式的参数空间中发现了类似Tricorn的集合。我们将这些类似三角形的集合作为合适的重新归一化基因座进行了严格的定义,并表明从这种三角形套件到原始Tricorn的动态自然拉直图是不连续的。我们还证明了多项式抛物线寄生虫的某些刚性定理,该定理表明可以从抛物线寄生虫细菌中恢复单一危机全态和抗孤晶多项式。
In [M3], Milnor found Tricorn-like sets in the parameter space of real cubic polynomials. We give a rigorous definition of these Tricorn-like sets as suitable renormalization loci, and show that the dynamically natural straightening map from such a Tricorn-like set to the original Tricorn is discontinuous. We also prove some rigidity theorems for polynomial parabolic germs, which state that one can recover unicritical holomorphic and anti-holomorphic polynomials from their parabolic germs.