论文标题

多级准蒙特卡洛,用于随机椭圆特征值问题I:规律性和错误分析

Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems I: Regularity and error analysis

论文作者

Gilbert, Alexander D., Scheichl, Robert

论文摘要

随机PDE特征值问题是量化物理科学和工程中几种应用中的不确定性的有用模型,例如结构振动分析,核反应堆或光子晶体结构的关键性。在本文中,我们提出了一种多级准蒙特卡洛(MLQMC)方法,用于近似椭圆特征值问题的最小特征值的期望,其系数被作为串联的繁殖型随机性参数给出。 MLQMC算法基于空间结构域的离散和随机参数域的截断的层次结构。为了近似期望,采用了随机移动的晶格规则。本文主要致力于对该算法的误差进行严格的分析。误差分析的关键步骤需要同时相对于随机变量和空间变量的特征功能的混合衍生物的界限。在对参数依赖性的更坚固的平滑度假设下,我们的分析还扩展到多级高阶准蒙特卡罗规则。随附的论文[Gilbert和Scheichl,2022年],重点介绍MLQMC算法的实际扩展,以提高效率,并提高数值结果。

Stochastic PDE eigenvalue problems are useful models for quantifying the uncertainty in several applications from the physical sciences and engineering, e.g., structural vibration analysis, the criticality of a nuclear reactor or photonic crystal structures. In this paper we present a multilevel quasi-Monte Carlo (MLQMC) method for approximating the expectation of the minimal eigenvalue of an elliptic eigenvalue problem with coefficients that are given as a series expansion of countably-many stochastic parameters. The MLQMC algorithm is based on a hierarchy of discretisations of the spatial domain and truncations of the dimension of the stochastic parameter domain. To approximate the expectations, randomly shifted lattice rules are employed. This paper is primarily dedicated to giving a rigorous analysis of the error of this algorithm. A key step in the error analysis requires bounds on the mixed derivatives of the eigenfunction with respect to both the stochastic and spatial variables simultaneously. Under stronger smoothness assumptions on the parametric dependence, our analysis also extends to multilevel higher-order quasi-Monte Carlo rules. An accompanying paper [Gilbert and Scheichl, 2022], focusses on practical extensions of the MLQMC algorithm to improve efficiency, and presents numerical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源