论文标题
使用持续同源性的记忆聚类用于多模式性和对最佳控制的不连续性学习
Memory Clustering using Persistent Homology for Multimodality- and Discontinuity-Sensitive Learning of Optimal Control Warm-starts
论文作者
论文摘要
拍摄方法是解决非线性最佳控制问题的有效方法。当他们使用局部优化时,当以良好的温暖起点初始化时,它们会表现出良好的收敛性,但如果提供的初始猜测很差,可能根本不会收敛。最近的工作重点是提供从训练问题空间探索过程中生成的样本的博学模型的初步猜测。但是,实际上,解决方案包含系统动态或环境引入的不连续性。此外,在许多情况下,存在多种模式的多模式的溶液来解决问题。经典学习在这些不连续性的边界上平稳,从而概括不良。在这项工作中,我们应用了代数拓扑的工具来提取有关解决方案空间基础结构的信息。特别是,我们引入了一种基于持续同源性的方法,以自动将预先计算解决方案的数据集聚集,以获得不同的候选初始猜测。然后,我们在每个集群中训练一个专家的混合物,以预测状态和控制轨迹,以使启动最佳控制求解器,并与模态性无术学习进行比较。我们演示了有关卡车杆玩具问题和避免障碍的四型螺旋桨的方法,并证明基于固有结构的聚类样品可改善温暖的质量。
Shooting methods are an efficient approach to solving nonlinear optimal control problems. As they use local optimization, they exhibit favorable convergence when initialized with a good warm-start but may not converge at all if provided with a poor initial guess. Recent work has focused on providing an initial guess from a learned model trained on samples generated during an offline exploration of the problem space. However, in practice the solutions contain discontinuities introduced by system dynamics or the environment. Additionally, in many cases multiple equally suitable, i.e., multi-modal, solutions exist to solve a problem. Classic learning approaches smooth across the boundary of these discontinuities and thus generalize poorly. In this work, we apply tools from algebraic topology to extract information on the underlying structure of the solution space. In particular, we introduce a method based on persistent homology to automatically cluster the dataset of precomputed solutions to obtain different candidate initial guesses. We then train a Mixture-of-Experts within each cluster to predict state and control trajectories to warm-start the optimal control solver and provide a comparison with modality-agnostic learning. We demonstrate our method on a cart-pole toy problem and a quadrotor avoiding obstacles, and show that clustering samples based on inherent structure improves the warm-start quality.