论文标题

niemeier lattices的Schellekens顶点操作员代数的系统轨道构造

Systematic Orbifold Constructions of Schellekens' Vertex Operator Algebras from Niemeier Lattices

论文作者

Höhn, Gerald, Möller, Sven

论文摘要

我们提出了一个系统的,严格的,所有70个强烈理性的,全态顶点操作员代数$ v $ f $ central Charge 24,非零重量的空间$ v_1 $作为与24 niemeier lattice lattice lattice lattice lattice vertex opertor anggebras $ v_n $ v_n $ v_n $ and Automorphismorphismorphismphismorphismss Cyclic Orbifold构造$ \ operatatorName {aut}(v_n)$。 我们表明,如Arxiv:1910.04947所介绍的Niemeier lattice Vertex操作员代数的额外属性,其订单等于相应的外部自动性的命令,直到代数共轭性,这些自动形态正是广义的深孔,如Arxiv:1910.04947所述。 加上Arxiv中的构造:1708.05990和Arxiv:1910.04947,这给出了这些顶点操作员代数的三种不同的统一构造,它们通过$ \ operatateNORNAME {CO} {CO} _0 $ $ $的11个代数共轭类相关。 最后,通过考虑与226个短自动形态相关的逆Orbifold构造,我们给出了第一个系统的证据,证明了每一个强烈理性的,全体形状的顶点操作员代数$ v $ of Central Charter Chentral Chentral Charter Charter Chentral Charter 24具有非零重量的空间$ V_1 $ $ V_1 $由Lie Algebra Contruct of V _ $ v_1 $ with $ v_1 $ is唯一确定。

We present a systematic, rigorous construction of all 70 strongly rational, holomorphic vertex operator algebras $V$ of central charge 24 with non-zero weight-one space $V_1$ as cyclic orbifold constructions associated with the 24 Niemeier lattice vertex operator algebras $V_N$ and certain 226 short automorphisms in $\operatorname{Aut}(V_N)$. We show that up to algebraic conjugacy these automorphisms are exactly the generalised deep holes, as introduced in arXiv:1910.04947, of the Niemeier lattice vertex operator algebras with the additional property that their orders are equal to those of the corresponding outer automorphisms. Together with the constructions in arXiv:1708.05990 and arXiv:1910.04947 this gives three different uniform constructions of these vertex operator algebras, which are related through 11 algebraic conjugacy classes in $\operatorname{Co}_0$. Finally, by considering the inverse orbifold constructions associated with the 226 short automorphisms, we give the first systematic proof of the result that each strongly rational, holomorphic vertex operator algebra $V$ of central charge 24 with non-zero weight-one space $V_1$ is uniquely determined by the Lie algebra structure of $V_1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源