论文标题

重力波的高阶电触电引力

Gravitational Waves in Higher Order Teleparallel Gravity

论文作者

Capozziello, Salvatore, Capriolo, Maurizio, Caso, Loredana

论文摘要

高阶拉格朗日的电触发电等效等于$ l _ {\ box r} = - r+a_ {0} r^{2}+a__ {1} r \ box r $,可以通过边界项$ b = 2 \nabla_μt^μ$获得。从这个角度来看,我们在存在物质的情况下得出了较高触发性重力的字段方程,尤其是六阶理论,其中$ \ box $运算符是线性包括的。在弱场近似中,得出了这些理论的重力波解。发现了三个极化状态:两个标准的$+$和$ \ times $极化,即2螺旋无质量的横向张量极化,以及0个巨大的大规模,具有部分横向和部分纵向标量偏振。此外,这些引力波与四个自由度有关:两个经典$+$和$ \ times $ tensor频率$ω_{1} $ tensor模式,与标准爱因斯坦Waves(具有$ k^{2} _ {1} _ {1} = 0 $;每个频率$ω_{2} $和$ω_{3} $的两个混合纵向横向标量模式,与两个不同的4波向量有关,$ k^{2} _ {2} _ {2} = m_ {2} = m_ {2}^{2}^{2} $ and $ k^{2} $ {2} {2} {2} _} $} $} $} $ {3}}}}}}} {2}} {2}}} {2}}}四个自由度是每种单个模式的振幅,即$ \hatε^{(+)} \ left(ω__{1} \ right)$,$ \hatε^{(\ times)} \ left(ω_____________________________________________________________________________________________________________________________- $ \ hat {b} _ {2} \ left(\ mathbf {k} \ right)$,$ \ hat {b} _ {3} \ left(\ mathbf {k} \ right)$。

The teleparallel equivalent of higher order Lagrangians like $L_{\Box R}=-R+a_{0}R^{2}+a_{1}R\Box R$ can be obtained by means of the boundary term $B=2\nabla_μT^μ$. In this perspective, we derive the field equations in presence of matter for higher-order teleparallel gravity considering, in particular, sixth-order theories where the $\Box$ operator is linearly included. In the weak field approximation, gravitational wave solutions for these theories are derived. Three states of polarization are found: the two standard $+$ and $\times$ polarizations, namely 2-helicity massless transverse tensor polarizations, and a 0-helicity massive, with partly transverse and partly longitudinal scalar polarization. Moreover, these gravitational waves exhibit four oscillation modes related to four degrees of freedom: the two classical $+$ and $\times$ tensor modes of frequency $ω_{1}$, related to the standard Einstein waves with $k^{2}_{1}=0$; two mixed longitudinal-transverse scalar modes for each frequencies $ω_{2}$ and $ω_{3}$, related to two different 4-wave vectors, $k^{2}_{2}=M_{2}^{2}$ and $k^{2}_{3}=M^{2}_{3}$. The four degrees of freedom are the amplitudes of each individual mode, i.e. $\hatε^{(+)}\left(ω_{1}\right)$, $\hatε^{(\times)}\left(ω_{1}\right)$, $\hat{B}_{2}\left(\mathbf{k}\right)$, and $\hat{B}_{3}\left(\mathbf{k}\right)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源