论文标题

Sobolev sierpinski垫片上的正交多项式

Sobolev Orthogonal Polynomials on the Sierpinski Gasket

论文作者

Jiang, Qingxuan, Lan, Tian, Okoudjou, Kasso, Strichartz, Robert, Sule, Shashank, Venkat, Sreeram, Wang, Xiaoduo

论文摘要

我们在Sierpiński垫圈($ SG $)上开发了Sobolev正交多项式的理论。这些正交多项式是通过使用Sobolev内部产品的几个概念上的$ sg $上的一组单元素应用于$ sg $上的革兰氏阴性正交过程。在为这些正交多项式建立了一些复发关系后,我们给出了它们的$ l^2 $,$ l^\ infty $和sobolev规范的估计,并研究其渐近行为。最后,我们研究了零集多项式集的属性,并开发了快速的计算工具来探索对正交和插值的应用。

We develop a theory of Sobolev orthogonal polynomials on the Sierpiński gasket ($SG$). These orthogonal polynomials arise through the Gram-Schmidt orthogonalisation process applied on the set of monomials on $SG$ using several notions of a Sobolev inner products. After establishing some recurrence relations for these orthogonal polynomials, we give estimates for their $L^2$, $L^\infty$ and Sobolev norms, and study their asymptotic behaviour. Finally, we study the properties of zero sets of polynomials and develop fast computational tools to explore applications to quadrature and interpolation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源