论文标题

在赫尔切尔·古尔德带调查观测值的珀尔修斯星形区域中环境介质和密集岩心的物理特性

Physical properties of the ambient medium and of dense cores in the Perseus star-forming region derived from Herschel Gould Belt Survey observations

论文作者

Pezzuto, S., Benedettini, M., Di Francesco, J., Palmeirim, P., Sadavoy, S., Schisano, E., Causi, G. Li, André, Ph., Arzoumanian, D., Bernard, J. -Ph., Bontemps, S., Elia, D., Fiorellino, E., Kirk, J. M., Könyves, V., Ladjelate, B., Menshchikov, A., Motte, F., Piccotti, L., Schneider, N., Spinoglio, L., Ward-Thompson, D., Wilson, C. D.

论文摘要

(删节)在本文中,我们介绍了用Herschel ESA卫星从70MU到500MU拍摄的图像的分析。我们首先构建了柱密度和灰尘温度图。接下来,我们在地图中鉴定了紧凑的核心,并使用改良的黑体拟合的SED表征了核心:我们确定了684个无星核,其中199个是绑定的,潜在的prestellar核心和132个原始核心。我们还匹配了具有Gaia源的Herschel认可的年轻恒星,以模拟跨越墨西云的距离变化。我们在整个云中测量具有正确的升华和偏角的线性梯度函数。从SED拟合中,得出了核心的质量和温度。核心质量函数可以以对数正态分布为0.82〜 $ m_ \ sun $峰值的对数正态分布进行建模,这表明恒星形成效率为0.30。高质量的尾巴可以用坡度$ \ sim-2.32 $的功率定律建模,接近萨尔珀特的价值。我们还确定了珀尔修斯的丝状结构,证实恒星在丝中优先形成。我们发现,恒星形成的大多数细丝都针对其自身的内部重力是跨批判性的,因为它们的线性质量低于16〜 $ m_ \ sun $ pc $ pc $^{ - 1} $的临界限制,我们期望我们希望细丝崩溃。我们为此结果找到了一个可能的解释,表明线性质量低至8〜 $ m_ \ sun $ pc $^{ - 1} $的细丝已经不稳定。我们确认恒星形成效率与灰尘概率密度函数的斜率之间的线性关系,并且与核心形成效率也有相似的关系。我们为Prestellar核心阶段提供了$ 1.69 \ pm0.52 $ 〜MYR的生命周期,但不同地区的Prestellar核心分数范围很广,这暗示恒星形成直到最近才在某些团块中开始。我们还为0.16〜MYR的Prestellar核心提供了一个自由下降的时间。

(Abridged) In this paper, we present analyses of images taken with the Herschel ESA satellite from 70mu to 500mu. We first constructed column density and dust temperature maps. Next, we identified compact cores in the maps, and characterize the cores using modified blackbody fits to their SEDs: we identified 684 starless cores, of which 199 are bound and potential prestellar cores, and 132 protostars. We also matched the Herschel-identified young stars with GAIA sources to model distance variations across the Perseus cloud. We measure a linear gradient function with right ascension and declination for the entire cloud. From the SED fits, mass and temperature of cores were derived. The core mass function can be modelled with a log-normal distribution that peaks at 0.82~$M_\sun$ suggesting a star formation efficiency of 0.30. The high-mass tail can be modelled with a power law of slope $\sim-2.32$, close to the Salpeter's value. We also identify the filamentary structure of Perseus, confirming that stars form preferentially in filaments. We find that the majority of filaments where star formation is ongoing are transcritical against their own internal gravity because their linear masses are below the critical limit of 16~$M_\sun$pc$^{-1}$ above which we expect filaments to collapse. We find a possible explanation for this result, showing that a filament with a linear mass as low as 8~$M_\sun$pc$^{-1}$ can be already unstable. We confirm a linear relation between star formation efficiency and slope of dust probability density function and a similar relation is also seen with the core formation efficiency. We derive a lifetime for the prestellar core phase of $1.69\pm0.52$~Myr for Perseus but different regions have a wide range in prestellar core fractions, hint that star-formation has started only recently in some clumps. We also derive a free-fall time for prestellar cores of 0.16~Myr.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源