论文标题
暗示冰冷的卵石迁移在磁盘的内行星形成区域中喂养富含氧的化学物质的提示
Hints for icy pebble migration feeding an oxygen-rich chemistry in the inner planet-forming region of disks
论文作者
论文摘要
我们提出了一项针对原月球磁盘的协同研究,以研究内磁盘气体分子与固体卵石的大规模迁移之间的联系。该样品包括63个磁盘,其中有两种类型的测量值:i)从空间分辨的磁盘图像揭示了圆盘鹅卵石的径向分布(MM-CM粉尘粒),从用ALMA或SMA的毫米观测到,以及II)红外分子发射光谱,如用Spitzer观察。 HCN,C2H2和CO2的H2O的线通量比与Dust Disk Radius R $ _ {DUST} $均抗逆转,扩大了Najita等人的先前结果。 (2013年)用于HCN/H2O和尘盘质量。通过对所有分子共有的积聚光度的依赖性的归一化,只有H2O光度与磁盘半径保持可检测到的抗相关性,这表明H2O和R $ _ {DUST} $之间的基本关系最强。如果r $ _ {dust} $是由大规模卵石漂移设置的,并且分子发光量追踪内磁盘温暖气体的元素预算,则可以自然地解释这些结果,而内部磁盘化学通过从外部迪斯特岛向内迁移的氧气富含氧气的冰冷的卵石来供应。在所有分子亮度和红外索引n $ _ {13-30} $之间还检测到抗相关性,这对内盘尘埃腔的存在和大小敏感。总体而言,这些关系表明,尘埃和气体演化之间的物理互连在本地和整个磁盘尺度之间。我们讨论了测试这种解释并研究卵石漂移,内盘耗竭和形成行星形成材料的化学之间的相互作用的基本预测。
We present a synergic study of protoplanetary disks to investigate links between inner disk gas molecules and the large-scale migration of solid pebbles. The sample includes 63 disks where two types of measurements are available: i) spatially-resolved disk images revealing the radial distribution of disk pebbles (mm-cm dust grains), from millimeter observations with ALMA or the SMA, and ii) infrared molecular emission spectra as observed with Spitzer. The line flux ratios of H2O with HCN, C2H2, and CO2 all anti-correlate with the dust disk radius R$_{dust}$, expanding previous results found by Najita et al. (2013) for HCN/H2O and the dust disk mass. By normalization with the dependence on accretion luminosity common to all molecules, only the H2O luminosity maintains a detectable anti-correlation with disk radius, suggesting that the strongest underlying relation is between H2O and R$_{dust}$. If R$_{dust}$ is set by large-scale pebble drift, and if molecular luminosities trace the elemental budgets of inner disk warm gas, these results can be naturally explained with scenarios where the inner disk chemistry is fed by sublimation of oxygen-rich icy pebbles migrating inward from the outer disk. Anti-correlations are also detected between all molecular luminosities and the infrared index n$_{13-30}$, which is sensitive to the presence and size of an inner disk dust cavity. Overall, these relations suggest a physical interconnection between dust and gas evolution both locally and across disk scales. We discuss fundamental predictions to test this interpretation and study the interplay between pebble drift, inner disk depletion, and the chemistry of planet-forming material.