论文标题
在低温下晶体中的声子水动力学
Phonon hydrodynamics in crystalline GeTe at low temperature
论文作者
论文摘要
第一原理密度功能方法以及线性化玻尔兹曼传输方程的直接溶液被系统地分析晶体中的低温热传输。从室温到低温温度的广泛热传输模拟揭示了在低温下GetE中的声子流体动力状态的出现。发现晶界散射的降低在适应流体动力学方面,在低温下在低温下的umklapp和正常散射的趋势以及正常散射起着至关重要的作用。正常,UMKLAPP和其他电阻过程的平均散射率在广泛(4-300 K)的温度下进行区分,并用于识别各种声子运输方式。因此,已经对晶格导热率,声子传播长度和温度的热扩散率的变化(与这些传输方案(弹道,水动力学和动力学)相关)的变化已得到彻底研究。根据不同散射过程,晶格导热率的模拟分解和热扩散率的区别揭示了在低温下GetE中的主要声子模式和声子散射过程的丰富信息。此外,动力学模型用于通过对热运输特性的集体和动力学贡献的相对研究来阐明声子散射的流体动力行为。在这种情况下,通过特征非本地长度和晶粒尺寸来估算纳特森数,这进一步量化了声子热传输的一致性流体动力行为。最后,实现了Gete的声子 - 散射散射,并发现了空缺,以影响流体动力学窗口,同时结合了其他电阻散射机制。
A first-principles density functional method along with the direct solution of linearized Boltzmann transport equations are employed to systematically analyze the low-temperature thermal transport in crystalline GeTe. The extensive thermal transport simulations, ranging from room temperature to cryogenic temperatures, reveal the emergence of a phonon hydrodynamic regime in GeTe at low temperature. The reduction of grain boundary scattering is found to play a crucial role along with the divergent trend of umklapp and normal scattering at low temperatures in accommodating the hydrodynamic regime. Average scattering rates for normal, umklapp, and other resistive processes are distinguished for a wide range (4-300 K) of temperatures and used for identifying various phonon transport regimes. Therefore, the variations of lattice thermal conductivity, phonon propagation length, and thermal diffusivity with temperature, related to these transport regimes (ballistic, hydrodynamic, and kinetic), have been thoroughly investigated. The modewise decomposition of lattice thermal conductivity and the distinction of thermal diffusivity according to different scattering processes reveal rich information on the dominant phonon modes and phonon scattering processes in GeTe at low temperature. Further, the kinetic-collective model is used to elucidate the hydrodynamic behavior of phonon scattering through the relative study of collective and kinetic contributions to the thermal transport properties. In this context, the Knudsen number is estimated through the characteristic nonlocal length and the grain size, which further quantifies the consistent hydrodynamic behavior of phonon thermal transport for GeTe. Finally, phonon-vacancy scattering for GeTe is realized, and vacancies are found strongly to influence the hydrodynamic window while incorporating the other resistive scattering mechanisms.