论文标题
$ {\ rm ADS} _3 $的免费场世界表相关器
Free field world-sheet correlators for ${\rm AdS}_3$
论文作者
论文摘要
我们采用$ \ mathfrak {psu}(1,1 | 2)_1 $ world-sheet理论的免费现场实现来约束字符串理论的相关因子$ {\ rm ads} _3 \ times {\ rm s}^\ rm s}^3 \ times^3 \ times \ times \ times \ mathbb {t}^4 $ with unit nit n s ns-ns-ns ns flux。特别是,我们直接获得了这些相关因子在(零)世界表的边界$ {\ rm s}^2 $的分支封面上的不寻常的三角洲函数定位 - 这是使双重对称符号符号符号的关键属性。在我们的方法中,此功能遵循相关器遵守的显着“发病率关系”,这让人想起扭曲的字符串描述。在各种特殊情况下,我们还通过明确的计算来说明我们的结果。
We employ the free field realisation of the $\mathfrak{psu}(1,1|2)_1$ world-sheet theory to constrain the correlators of string theory on ${\rm AdS}_3\times {\rm S}^3\times \mathbb{T}^4$ with unit NS-NS flux. In particular, we directly obtain the unusual delta function localisation of these correlators onto branched covers of the boundary ${\rm S}^2$ by the (genus zero) world-sheet -- this is the key property which makes the equivalence to the dual symmetric orbifold manifest. In our approach, this feature follows from a remarkable `incidence relation' obeyed by the correlators, which is reminiscent of a twistorial string description. We also illustrate our results with explicit computations in various special cases.