论文标题

关于双曲线圆圈晶格点的分布

On the distribution of lattice points on hyperbolic circles

论文作者

Chatzakos, Dimitrios, Kurlberg, Par, Lester, Stephen, Wigman, Igor

论文摘要

我们研究了在双曲机平面$ \ mathbb {h} $中扩展圆圈上的晶格点的精细分布。由模块组$ psl_ {2}(\ Mathbb {z})$的轨道产生的晶格点的角度,并躺在双曲线圆上,被证明是对通用radii的等分分配。然而,即使在存在生长的情况下,角度也无法在一组薄的异常半径上等分。令人惊讶的是,双曲线圆圈上的角度的分布与$ \ mathbb {z}^2 $ -lattice点(具有某些平等条件)的角度分布有关,沿$ \ mathbb {r}^2 $,沿radii的薄效率。一个值得注意的区别在于,双曲线设置中的度量可能会破坏对称性 - 在非常薄的子序列上,它们在$ \fracπ{2} $旋转下并不不变,与所有措施具有此不变性属性的欧几里得设置不同。

We study the fine distribution of lattice points lying on expanding circles in the hyperbolic plane $\mathbb{H}$. The angles of lattice points arising from the orbit of the modular group $PSL_{2}(\mathbb{Z})$, and lying on hyperbolic circles, are shown to be equidistributed for generic radii. However, the angles fail to equidistribute on a thin set of exceptional radii, even in the presence of growing multiplicity. Surprisingly, the distribution of angles on hyperbolic circles turns out to be related to the angular distribution of $\mathbb{Z}^2$-lattice points (with certain parity conditions) lying on circles in $\mathbb{R}^2$, along a thin subsequence of radii. A notable difference is that measures in the hyperbolic setting can break symmetry - on very thin subsequences they are not invariant under rotation by $\fracπ{2}$, unlike the Euclidean setting where all measures have this invariance property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源