论文标题

正交死亡随机措施,素数和应用

Orthogonal Die Random Measures, Primes, and Applications

论文作者

Bastian, Caleb Deen, Rempala, Grzegorz A

论文摘要

我们表明,稀薄的均匀随机计数测量序列薄弱地收敛到泊松随机度量。由于它们与某些计数问题的自然联系,并通过构建最大的已知Prime Orthoconal Die来将这种措施“正交骰子”称为“正交骰子”。我们举例说明了在应用程序,包括赌博,宇宙学,随机矩阵,近似理论和电路的各个领域中可能使用正交骰子的构造的例子。例如,赌博示例表明,公平的六面模具编号$ \ {1,2,3,4,5,6 \} $在跨玩家的手代表方面产生负值,与七个骰子编号$ \ \ {1,2,3,5,5,6,6,7 \ \ \ {1,2,4,5,6,7 \} $ gertate ger Orthognon and Orthogon。宇宙学的例子表明,“超大型”正交模具是宇宙星系点模式的基础。随机矩阵的应用表明,高斯正交集合的光谱间隙的方差表现出非单调尺度的缩放,而dirac(经验)随机度量的变薄,而频谱差距方差为单位元,而光谱差距是单调的。最后,近似应用程序表明,离散的Legendre多项式将整数的$ l^p $收敛到Charlier多项式,而电子电路/SHOT噪声应用程序则将电流标识为Ornstein-Uhlenbeck过程,由Ornstein-Uhlenbeck过程驱动。

We show that the sequence of thinned uniform random counting measures converges weakly to the Poisson random measure. We call such measures 'orthogonal dice' due to their natural connection with certain counting problems and link the sizes of orthogonal dice with the primes by constructing the largest known prime orthogonal die. We give many examples of possible use of the construct of orthogonal dice in various areas of applications including gambling, cosmology, random matrices, approximation theory and circuits. The gambling example reveals for instance that fair six-sided die numbered $\{1,2,3,4,5,6\}$ generate negative covariance in point representations of hands across players, in contrast to seven-sided dice numbered $\{1,2,3,4,5,6,7\}$ that generate zero covariance and are orthogonal. The cosmology example suggests that a 'supermassive' orthogonal die underlies the galaxy point patterns of the Universe. The random matrix application reveals that the variance of the spectral gap of the Gaussian orthogonal ensemble exhibits non-monotone scaling with thinning for the Dirac (empirical) random measure, in contrast to the orthogonal dice where the spectral gap variance is monotone. Finally, the approximation application shows that the discrete Legendre polynomials converge to the Charlier polynomials in $L^p$ for integers $p\ge1$ whereas the electronic circuit/shot noise application identifies electric current as the Ornstein-Uhlenbeck process driven by an orthogonal die random measure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源