论文标题

具有压力各向异性和不可压缩等离子体旋转与磁场平行的数值平衡

Numerical equilibria with pressure anisotropy and incompressible plasma rotation parallel to the magnetic field

论文作者

Poulipoulis, G., Throumoulopoulos, G. N.

论文摘要

据信,等离子体旋转会影响向Tokamaks中高级禁闭体的过渡。此外,为了达到融合温度,现代托卡马克斯依靠辅助加热方法。这些方法在血浆中产生压力各向异性。对于不可压缩的旋转与压力各向异性的旋转,平衡受有效压力的广义级别 - shafranov(GGS)方程(GGS)方程(GGS)方程和脱钩的Bernoulli-Type方程,用于有效压力,$ \ bar {p} =(p _ \ \ p_ \ \ p_ \ parallel+p_ \ p_ \ perp $ p_ p_ $ p_ $ p_ $ p_ $ p_ $($ p_ $ p_ $ p_ $ p_ $ p_ $ p_ $ p_ $( (垂直)到磁场。在平行于磁场的等离子体旋转的情况下,GGS方程可以转换为与GS方程形式相同的一个方程。在这项研究中,通过利用GGS方程的上述特性进行平行等离子体旋转,我们通过扩展Helena(一种平衡的固定晶体求解器)来构建了类似ITER的数值平衡,并检查了旋转和各向异性对某些平衡量的影响。主要的结论是,将压力各向异性添加到旋转中允许在更大程度上构建平衡量的轮廓形状,从而有利于限制,并允许扩展与较高值相对应的马赫数的参数空间。此外,对于所检查的大多数量,压力各向异性在平衡量中的影响要强于旋转。对于压力成分,无论功率是平行还是垂直于磁性表面的电源,压力各向异性的影响都是相同的,因此暗示没有优选的加热方向,而对于电流密度,与磁性表面平行的热量似乎对当前的电流驱动式驱动式驱动式启动式稳态。

It is believed that plasma rotation can affect the transitions to the advanced confinement regimes in tokamaks. In addition, in order to achieve fusion temperatures modern tokamaks rely on auxiliary heating methods. These methods generate pressure anisotropy in the plasma. For incompressible rotation with pressure anisotropy the equilibrium is governed by a Generalized Grad-Shafranov (GGS) equation and a decoupled Bernoulli-type equation for the effective pressure, $\bar{p}=(p_\parallel+p_\perp)/2$, where $p_\parallel$ ($p_\perp$) is the pressure tensor element parallel (perpendicular) to the magnetic field. In the case of plasma rotation parallel to the magnetic field the GGS equation can be transformed to one equation identical in form with the GS equation. In this study by making use of the aforementioned property of the GGS equation for parallel plasma rotation we have constructed ITER-like numerical equilibria by extending HELENA, an equilibrium fixed-boundary solver and examined the impact of rotation and anisotropy on certain equilibrium quantities. The main conclusions are that the addition of pressure anisotropy to rotation allows the profile shaping of the equilibrium quantities in much more extent thus favouring the confinement and allows extension of the parametric space of the Mach number corresponding to higher values. Furthermore, the impact of pressure anisotropy in the equilibrium quantities is stronger than that of the rotation, for most of the quantities examined. For the pressure components the impact of the pressure anisotropy is the same regardless of whether the power is deposited parallel or perpendicular to the magnetic surfaces, thus implying that there is no preferable heating direction, while for the current density, the heating parallel to the magnetic surfaces seems to be beneficial for the current-gradient driven instabilities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源