论文标题
更高的表示和弯曲的Heegaard浮子同源
Higher representations and cornered Heegaard Floer homology
论文作者
论文摘要
我们开发了奇数一维超级谎言代数$ gl(1 | 1)^+$的2个代表理论,并证明它控制着Lipshitz,Ozsváth和Thurston的Heegaard-Floer理论。我们的主要工具是构建用于两种代理的张量产品。我们表明它对应于表面的胶合操作或弧分解的和弦图。这将Heegaard-loer理论扩展到了维度一个,扩大了道格拉斯,Lipshitz和Manolescu的工作。
We develop the 2-representation theory of the odd one-dimensional super Lie algebra $gl(1|1)^+$ and show it controls the Heegaard-Floer theory of surfaces of Lipshitz, Ozsváth and Thurston. Our main tool is the construction of a tensor product for 2-representations. We show it corresponds to a gluing operation for surfaces, or the chord diagrams of arc decompositions. This provides an extension of Heegaard-Floer theory to dimension one, expanding the work of Douglas, Lipshitz and Manolescu.