论文标题

Zeckendorf游戏的界限

Bounds on Zeckendorf Games

论文作者

Cusenza, Anna, Dunkelberg, Aiden, Huffman, Kate, Ke, Dianhui, McClatchey, Micah, Miller, Steven J., Mizgerd, Clayton, Tiwari, Vashisth, Ye, Jingkai, Zheng, Xiaoyan

论文摘要

Zeckendorf证明,每个正整数$ n $都可以独特地写成非阳性斐波那契数的总和。我们使用这种分解来构建两人游戏。给定固定的整数$ n $和$ n = n f_1 $的初始分解,两个播放器通过使用与复发关系相关的动作$ f_ {n+1} = f_n+f_n+f_n+f_ {n-1} $交替进行交替。游戏总是在Zeckendorf分解中终止;根据运动长度的选择,并且获胜者可能会有所不同,尽管对于$ n \ ge 2 $,有一个非构造性证据,表明玩家2具有获胜策略。 最初,游戏长度的下限是订单$ n $(已知是尖锐的),而上限为$ n \ log n $。最近的工作将上限降低到尺寸$ n $,但其常数比猜想更大。我们改善上限并获得$ \ frac {\ sqrt {\ sqrt {5} +3} {2} {2} \ n -iz(n) - \ frac {1+ \ sqrt {5}} {2} {2} {2} z(n)$,是$ n $ z(n)$ n是$ n的$ n is $ n is of zeck n和z n $ n $ n $ n n n of zeck of zeck and z n n $ n n n n Nuger of the execk, $ iz(n)$是$ n $的zeckendorf分解中的索引总和(分别是$ \ log n $和$ \ log^2 n $)。我们还引入了一种贪婪的算法,该算法意识到上限,并表明,任何$ n $上最长的游戏都是通过尽可能应用分配动作来实现的。

Zeckendorf proved that every positive integer $n$ can be written uniquely as the sum of non-adjacent Fibonacci numbers. We use this decomposition to construct a two-player game. Given a fixed integer $n$ and an initial decomposition of $n=n F_1$, the two players alternate by using moves related to the recurrence relation $F_{n+1}=F_n+F_{n-1}$, and whoever moves last wins. The game always terminates in the Zeckendorf decomposition; depending on the choice of moves the length of the game and the winner can vary, though for $n\ge 2$ there is a non-constructive proof that Player 2 has a winning strategy. Initially the lower bound of the length of a game was order $n$ (and known to be sharp) while the upper bound was of size $n \log n$. Recent work decreased the upper bound to of size $n$, but with a larger constant than was conjectured. We improve the upper bound and obtain the sharp bound of $\frac{\sqrt{5}+3}{2}\ n - IZ(n) - \frac{1+\sqrt{5}}{2}Z(n)$, which is of order $n$ as $Z(n)$ is the number of terms in the Zeckendorf decomposition of $n$ and $IZ(n)$ is the sum of indices in the Zeckendorf decomposition of $n$ (which are at most of sizes $\log n$ and $\log^2 n$ respectively). We also introduce a greedy algorithm that realizes the upper bound, and show that the longest game on any $n$ is achieved by applying splitting moves whenever possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源