论文标题
使用平衡和卢卡斯平衡多项式的Lucas-Euler关系
Lucas-Euler relations using balancing and Lucas-balancing polynomials
论文作者
论文摘要
我们建立了一些涉及欧拉多项式和平衡(Lucas平衡)多项式的新组合身份。这些派生使用基本技术,并基于相应生成功能的功能方程。从这些多项式关系中,我们推断出具有斐波那契和卢卡斯数字以及欧拉数字的有趣身份。结果必须被视为我们在上一篇论文中得出的一些斐波那酸贝尔努利身份的伴随结果。
We establish some new combinatorial identities involving Euler polynomials and balancing (Lucas-balancing) polynomials. The derivations use elementary techniques and are based on functional equations for the respective generating functions. From these polynomial relations, we deduce interesting identities with Fibonacci and Lucas numbers, and Euler numbers. The results must be regarded as companion results to some Fibonacci-Bernoulli identities, which we derived in our previous paper.