论文标题
通过辅助质量流量计算Feynman循环集成和相位集成
Calculation of Feynman loop integration and phase-space integration via auxiliary mass flow
论文作者
论文摘要
我们扩展了最初为Feynman Loop集成而开发的辅助质量流(AMF)方法,以计算涉及相位空间集成的积分。辅助质量从边界($ \ infty $)到物理点($ 0^+$)的流量是通过数值求解辅助质量的微分方程来获得的。对于两个或多个运动不变的问题,可以通过提供系统的边界条件和高度非平凡的自洽检查,将AMF方法与传统的微分方程方法结合使用。该方法详细描述了$ e^+e^ - \rightarrowγ^* \ rightArrow t \ bar {t}+x $在nnlo上的教学示例。我们表明,AMF方法可以系统地,有效地将积分计算为高精度。
We extend the auxiliary-mass-flow (AMF) method originally developed for Feynman loop integration to calculate integrals involving also phase-space integration. Flow of the auxiliary mass from the boundary ($\infty$) to the physical point ($0^+$) is obtained by numerically solving differential equations with respective to the auxiliary mass. For problems with two or more kinematical invariants, the AMF method can be combined with traditional differential equation method by providing systematical boundary conditions and highly nontrivial self-consistent check. The method is described in detail with a pedagogical example of $e^+e^-\rightarrow γ^* \rightarrow t\bar{t}+X$ at NNLO. We show that the AMF method can systematically and efficiently calculate integrals to high precision.