论文标题

在含义的Zroupoid中,半分布和惠特曼财产

Semidistributivity and Whitman Property in Implication Zroupoids

论文作者

Cornejo, Juan M., Sankappanavar, Hanamantagouda P.

论文摘要

在2012年,第二作者介绍并研究了含义Zroupoids的品种$ \ MATHCAL {I} $,这些Zroupoids概括了De Morgan代数和$ \ lor $ -semilattices,并以$ 0 $ $ 0 $。一个代数$ \ mathbf a = \ langle a,\ to,0 \ rangle $,其中$ \ to $ to $ as binary as Binary ex and $ 0 $是一个常数,称为\ emph {Incemation zroupoid}($ \ nathcal {$ \ nathcal {i} $(x \ to y)\ to z \ about [(z'\ to x)\ to(y \ to z)']''$,其中$ x':= x \ to 0 $,$ 0''\ oft 0 $。 令$ \ mathcal {i} $表示含义的Zroupoids和$ \ Mathbf a \ in \ Mathcal {i} $。对于$ x,y \ in \ mathbf a $,令$ x \ land y:=(x \ to y')'$和$ x \ lor y:=(x'\ land y')'$。在较早的论文中,我们证明,如果$ \ mathbf a \ in \ mathcal {i} $,则代数$ \ mathbf a_ {mj} = \ langle a,\ lor,\ lor,\ land \ land \ langle $是Bisemigroup。在本文中,我们将半分布性的概念从晶格中概述到双元组,并证明,对于每一个$ \ mathbf a \ in \ mathcal {i} $,bisemigroup $ \ mathbf a_ {mj} $的概念是半分布的。其次,我们将惠特曼的财产从晶格概括为双元素,并证明$ \ mathcal i $的subvarietion $ \ mathcal {mej} $,由身份定义:$ x \ land y \ land y \ of x \ lor y $,满足惠特曼物业。

In 2012, the second author introduced and studied the variety $\mathcal{I}$ of implication zroupoids that generalize De Morgan algebras and $\lor$-semilattices with $0$. An algebra $\mathbf A = \langle A, \to, 0 \rangle$, where $\to$ is binary and $0$ is a constant, is called an \emph{implication zroupoid} ($\mathcal{I}$-zroupoid, for short) if $\mathbf A$ satisfies: $(x \to y) \to z \approx [(z' \to x) \to (y \to z)']'$, where $x' : = x \to 0$, and $ 0'' \approx 0$. Let $\mathcal{I}$ denote the variety of implication zroupoids and $\mathbf A \in \mathcal{I}$. For $x,y \in \mathbf A$, let $x \land y := (x \to y')'$ and $x \lor y := (x' \land y')'$. In an earlier paper we had proved that if $\mathbf A \in \mathcal{I}$, then the algebra $\mathbf A_{mj} = \langle A, \lor, \land \rangle$ is a bisemigroup. In this paper we generalize the notion of semi-distributivity from lattices to bisemigroups and prove that, for every $\mathbf A \in \mathcal{I}$, the bisemigroup $\mathbf A_{mj}$ is semidistributive. Secondly, we generalize the Whitman Property from lattices to bisemigroups and prove that the subvariety $\mathcal{MEJ}$ of $\mathcal I$, defined by the identity: $x \land y \approx x \lor y$, satisfies the Whitman Property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源