论文标题

双极扩散与大厅对磁场解耦的效应与原始盘形成之间的相互作用

The Interplay between Ambipolar Diffusion and Hall Effect on Magnetic Field Decoupling and Protostellar Disc Formation

论文作者

Zhao, Bo, Caselli, Paola, Li, Zhi-Yun, Krasnopolsky, Ruben, Shang, Hsien, Lam, Ka Ho

论文摘要

非理想的MHD效应最近被证明是避免磁制动“灾难”并促进质固定盘形成的强大机制。但是,确定非理想MHD效应效率的磁扩散率对微物理学高度敏感。我们进行了非理想的MHD模拟,以探索微物理学对椎间盘形成以及在原恒星塌陷期间的双摩托物在椎间盘形成以及歧义性霍尔效应之间的相互作用。我们发现,从标准MRN尺寸分布中删除最小的谷物种群($ \ Lessim $ 10 nm)足以实现椎间盘形成。进一步改变晶粒尺寸可能会导致大厅主导或以广告为主的崩溃。无论磁场极性如何圆盘旋转的方向是大厅中的双峰,但在广告主导的崩溃中单峰。我们还发现,AD和HALL效应可以在径向和方位角方向上彼此之间或相互作用,但是AD和HALL的综合效应是相对于插入的包膜物质,径向向外移动磁场。此外,微物理学和磁场极性可以在可观察物(例如流出形态,圆盘与恒星质量比)和原球盘的磁场特征上留下深刻的烙印。包括霍尔效应放宽了对碟片形成的微物理学的要求,因此,具有宇宙射线电离速率的PRESTELLAR核心$ \ sillesim $ 2--3 $ \ times10^{ - 16} $ s $ s $^{ - 1} $仍然可以形成$ \ $ \ sieldsim $ 10 au radius的小盘。我们得出的结论是,对于典型的prestell核心条件,椎间盘的形成应该相对常见,而原恒星包膜中的微物理不仅对于盘形成,而且对于原球盘的演化至关重要。

Non-ideal MHD effects have been shown recently as a robust mechanism of averting the magnetic braking "catastrophe" and promoting protostellar disc formation. However, the magnetic diffusivities that determine the efficiency of non-ideal MHD effects are highly sensitive to microphysics. We carry out non-ideal MHD simulations to explore the role of microphysics on disc formation and the interplay between ambipolar diffusion (AD) and Hall effect during the protostellar collapse. We find that removing the smallest grain population ($\lesssim$10 nm) from the standard MRN size distribution is sufficient for enabling disc formation. Further varying the grain sizes can result in either a Hall-dominated or an AD-dominated collapse; both form discs of tens of AU in size regardless of the magnetic field polarity. The direction of disc rotation is bimodal in the Hall dominated collapse but unimodal in the AD-dominated collapse. We also find that AD and Hall effect can operate either with or against each other in both radial and azimuthal directions, yet the combined effect of AD and Hall is to move the magnetic field radially outward relative to the infalling envelope matter. In addition, microphysics and magnetic field polarity can leave profound imprints both on observables (e.g., outflow morphology, disc to stellar mass ratio) and on the magnetic field characteristics of protoplanetary discs. Including Hall effect relaxes the requirements on microphysics for disc formation, so that prestellar cores with cosmic-ray ionization rate of $\lesssim$2--3$\times10^{-16}$ s$^{-1}$ can still form small discs of $\lesssim$10 AU radius. We conclude that disc formation should be relatively common for typical prestellar core conditions, and that microphysics in the protostellar envelope is essential to not only disc formation, but also protoplanetary disc evolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源