论文标题

带有一维船体的扭曲的芦苇 - 固体代码

Twisted Reed-Solomon Codes With One-dimensional Hull

论文作者

Wu, Yansheng

论文摘要

线性代码的船体被定义为代码及其偶的相交。当船体的大小很小时,已经证明,一些用于检查两个线性代码的排列等效性并计算线性代码的自动态组的算法通常非常有效。最大距离可分离(MDS)代码是符合Singleton绑定的代码。扭曲的芦苇 - 固体代码是芦苇 - 固体代码的概括,这也是MDS代码的一个不错的结构。在这篇简短的字母中,我们获得了一些带有一维船体的曲折的芦苇溶解MDS代码。此外,这些代码在单一上不等于芦苇 - 固体代码。

The hull of a linear code is defined to be the intersection of the code and its dual. When the size of the hull is small, it has been proved that some algorithms for checking permutation equivalence of two linear codes and computing the automorphism group of a linear code are very effective in general. Maximum distance separable (MDS) codes are codes meeting the Singleton bound. Twisted Reed-Solomon codes is a generalization of Reed-Solomon codes, which is also a nice construction for MDS codes. In this short letter, we obtain some twisted Reed-Solomon MDS codes with one-dimensional hull. Moreover, these codes are not monomially equivalent to Reed-Solomon codes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源