论文标题

Brieskorn模块和中心条件:射影空间中的微分方程的下拉

Brieskorn module and Center conditions: pull-back of differential equations in projective space

论文作者

Zare, Yadollah, Tanabe, Susumu

论文摘要

代数叶子在固定程度和中心奇异性的P2上的模量空间具有许多不可还原成分。我们找到了针对有理函数定义的Brieskorn模块的基础,并证明了下拉背叶构成模量空间的不可约组件。主要工具是两个变量,周期积分和Brieskorn模块中有理函数的Picard-Lefschetz理论。

The moduli space of algebraic foliations on P2 of a fixed degree and with a center singularity has many irreducible components. We find a basis of the Brieskorn module defined for a rational function and prove that set of pull-back foliations forms an irreducible component of the moduli space. The main tools are the Picard-Lefschetz theory of a rational function in two variables, period integrals, and the Brieskorn module.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源