论文标题
抗铁磁分散关系和木压力的性质
Antiferromagnetic Dispersion Relations and Nature of Magnon Pressure
论文作者
论文摘要
我们在二维和三维的抗铁磁铁中得出了磁化散布关系中的高阶校正,暴露于相互对准的磁性和交错场。 “敷料”磁蛋白是由于非互动的少坚元子和与镁麦角相互作用相对应的碎片,将压力的低温表示形式分离为零件的先决条件。在两个和三个空间维度中,压力中的相互作用都非常有吸引力。虽然具体数字是指旋转 - $ \ frac {1} {2} $ square-tatce和旋转 - $ \ frac {1} {2} $简单的立方晶格抗fiferromagnet,但我们的结果对于任意的bipartite几何形状有效。
We derive higher-order corrections in the magnon dispersion relations for two- and three-dimensional antiferromagnets exposed to magnetic and staggered fields that are mutually aligned. "Dressing" the magnons is the prerequisite to separate the low-temperature representation of the pressure into a piece due to noninteracting magnons and a piece that corresponds to the magnon-magnon interaction. Both in two and three spatial dimensions, the interaction in the pressure turns out to be attractive. While concrete figures refer to the spin-$\frac{1}{2}$ square-lattice and the spin-$\frac{1}{2}$ simple cubic lattice antiferromagnet, our results are valid for arbitrary bipartite geometry.