论文标题

Katz-Lebowitz-Spohn驱动的晶格气体中的平行温度接口

Parallel Temperature Interfaces in the Katz-Lebowitz-Spohn Driven Lattice Gas

论文作者

Mukhamadiarov, Ruslan I., Priyanka, Täuber, Uwe C.

论文摘要

我们探索了Katz-Lebowitz-Spohn(KLS)驱动的晶格气体的变体,其中晶格分为两个区域,这些区域与温度不同的温度耦合到热浴。温度边界是平行于外部粒子驱动器的。如果界面处的跳速率满足粒子孔对称性,则它们之间的电流差会产生类似于涡旋表的矢量流程图。我们已经研究了两个温度区域中粒子密度波动的有限尺寸缩放,并观察到它受相应温度值控制。如果将较冷的子系统保持在KLS临界温度下,而较热的子系统的温度设置得更高,则接口电流极大地抑制了两个区域之间的粒子交换。由于随之而来的有效子系统去耦,临界区域的强烈波动持续存在,因此粒子密度波动量表与KLS关键指数相关。但是,如果两个温度远高于临界温度,则根据完全不对称的排除过程(TASEP),粒子密度波动尺寸。我们还测量了两个子系统的熵生产率。它在关键区域显示出有趣的代数衰变,而在较热区域的小但非零的水平迅速饱和。我们还考虑了在温度界面上明确打破粒子对称性的另一个可能的选择。在这种情况下,边界速率会诱导跨界面上显示幂律行为的净粒子通量,直到最终粒子排除约束会产生堵塞过渡到惰性状态。

We explore a variant of the Katz-Lebowitz-Spohn (KLS) driven lattice gas in two dimensions, where the lattice is split into two regions that are coupled to heat baths with distinct temperatures. The temperature boundaries are oriented parallel to the external particle drive. If the hopping rates at the interfaces satisfy particle-hole symmetry, the current difference across them generates a vector flow diagram akin to a vortex sheet. We have studied the finite-size scaling of the particle density fluctuations in both temperature regions, and observed that it is controlled by the respective temperature values. If the colder subsystem is maintained at the KLS critical temperature, while the hotter subsystem's temperature is set much higher, the interface current greatly suppresses particle exchange between the two regions. As a result of the ensuing effective subsystem decoupling, strong fluctuations persist in the critical region, whence the particle density fluctuations scale with the KLS critical exponents. However, if both temperatures are set well above the critical temperature, the particle density fluctuations scale according to the totally asymmetric exclusion process (TASEP). We have also measured the entropy production rate in both subsystems; it displays intriguing algebraic decay in the critical region, while it saturates quickly at a small but non-zero level in the hotter region. We have also considered another possible choice of the hopping rates across the temperature interfaces that explicitly breaks particle-hole symmetry. In that case the boundary rates induce a net particle flux across the interfaces that displays power-law behavior, until ultimately the particle exclusion constraints generate a clogging transition to an inert state.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源